Spatiotemporal protein interactome profiling through condensation-enhanced photocrosslinking

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

Article  CAS  PubMed  Google Scholar 

Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

Article  CAS  PubMed  Google Scholar 

Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

Article  CAS  PubMed  Google Scholar 

Deniz, A. A. Networking and dynamic switches in biological condensates. Cell 181, 228–230 (2020).

Article  CAS  PubMed  Google Scholar 

Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

Article  CAS  PubMed  Google Scholar 

Youn, J.-Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532 (2018).

Article  CAS  PubMed  Google Scholar 

Millar, S. R. et al. A new phase of networking: the molecular composition and regulatory dynamics of mammalian stress granules. Chem. Rev. 14, 9036–9064 (2023).

Article  Google Scholar 

Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

Article  CAS  PubMed  Google Scholar 

Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604 (2018).

Article  CAS  PubMed  Google Scholar 

Zhu, H., Tamura, T. & Hamachi, I. Chemical proteomics for subcellular proteome analysis. Curr. Opin. Chem. Biol. 48, 1–7 (2019).

Article  CAS  PubMed  Google Scholar 

Long, M. J. C., Zhao, Y. & Aye, Y. Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chem. Biol. 1, 42–55 (2020).

Article  CAS  PubMed  Google Scholar 

Oakley, J. V. et al. Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform. Proc. Natl Acad. Sci. USA 119, e2203027119 (2022).

Article  CAS  PubMed  Google Scholar 

Lobingier, B. T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350–360 (2017).

Article  CAS  PubMed  Google Scholar 

Mishra, P. K. et al. A chemical tool for blue light-inducible proximity photo-crosslinking in live cells. Chem. Sci. 13, 955–966 (2022).

Article  CAS  PubMed  Google Scholar 

Bracha, D., Walls, M. T. & Brangwynne, C. P. Probing and engineering liquid-phase organelles. Nat. Biotechnol. 37, 1435–1445 (2019).

Article  CAS  PubMed  Google Scholar 

Aydin, Y. & Coin, I. Genetically encoded crosslinkers to address protein-protein interactions. Protein Sci. 32, e4637 (2023).

Article  CAS  PubMed  Google Scholar 

Hu, W. et al. Genetically encoded residue-selective photo-crosslinker to capture protein–protein interactions in living cells. Chem 5, 2955–2968 (2019).

Article  CAS  Google Scholar 

Suchanek, M., Radzikowska, A. & Thiele, C. Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells. Nat. Methods 2, 261–267 (2005).

Article  CAS  PubMed  Google Scholar 

Yang, T. P., Li, X. M., Bao, X. C., Fung, Y. M. E. & Li, X. D. Photo-lysine captures proteins that bind lysine post-translational modifications. Nat. Chem. Biol. 12, 70–72 (2016).

Article  CAS  PubMed  Google Scholar 

Pham, N. D., Parker, R. B. & Kohler, J. J. Photocrosslinking approaches to interactome mapping. Curr. Opin. Chem. Biol. 17, 90–101 (2013).

Article  CAS  PubMed  Google Scholar 

Saito, M. et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15, 51–61 (2019).

Article  CAS  PubMed  Google Scholar 

Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).

Article  CAS  PubMed  Google Scholar 

Vishwanath, S., Sukhwal, A., Sowdhamini, R. & Srinivasan, N. Specificity and stability of transient protein–protein interactions. Curr. Opin. Struct. Biol. 44, 77–86 (2017).

Article  CAS  PubMed  Google Scholar 

Huang, H., Lin, S., Garcia, B. A. & Zhao, Y. Quantitative proteomic analysis of histone modifications. Chem. Rev. 115, 2376–2418 (2015).

Article  CAS  PubMed  Google Scholar 

Moran Luengo, T., Mayer, M. P. & Rudiger, S. G. D. The Hsp70–Hsp90 chaperone cascade in protein folding. Trends. Cell Biol. 29, 164–177 (2019).

Article  CAS  PubMed  Google Scholar 

You, K. et al. PhaSepDB: a database of liquid–liquid phase separation related proteins. Nucleic Acids Res. 48, D354–D359 (2020).

Article  CAS  PubMed  Google Scholar 

Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

Article  CAS  PubMed  Google Scholar 

Hino, M., Kurogi, K., Okubo, M.-A., Murata-Hori, M. & Hosoya, H. Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem. Biophys. Res. Commun. 271, 164–169 (2000).

Article  CAS  PubMed  Google Scholar 

He, D. et al. Quantitative and comparative profiling of protease substrates through a genetically encoded multifunctional photocrosslinker. Angew. Chem. Int. Ed. 56, 14521–14525 (2017).

Article  CAS  Google Scholar 

Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

Article  CAS  PubMed  Google Scholar 

Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

Article  CAS  PubMed  Google Scholar 

West, A. V. et al. Labeling preferences of diazirines with protein biomolecules. J. Am. Chem. Soc. 143, 6691–6700 (2021).

Article  CAS  PubMed  Google Scholar 

Halloran, M. W. & Lumb, J. P. Recent applications of diazirines in chemical proteomics. Chem. Eur. J. 25, 4885–4898 (2019).

Article  CAS  PubMed 

Comments (0)

No login
gif