Engineering a xylose fermenting yeast for lignocellulosic ethanol production

Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356, eaal2324 (2017).

Article  PubMed  Google Scholar 

Lynd, L. R. The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35, 912–915 (2017).

Article  CAS  PubMed  Google Scholar 

Wang, L., Bilal, M., Tan, C., Jiang, X. & Li, F. Industrialization progress of lignocellulosic ethanol. Syst. Microbiol. Biomanufacturing 2, 246–258 (2021).

Article  Google Scholar 

Service, R. F. Renewable energy. Cellulosic ethanol at last? Science 345, 1111 (2014).

Article  CAS  PubMed  Google Scholar 

Huang, H. et al. Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour. Technol. 102, 7486–7493 (2011).

Article  CAS  PubMed  Google Scholar 

Lam, F. H. et al. Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks. Sci. Adv. 7, eabf7613 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Humbird, D. et al. Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (National Renewable Energy Laboratory, 2011).

Cunha, J. T., Romani, A., Costa, C. E., Sa-Correia, I. & Domingues, L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl. Microbiol. Biotechnol. 103, 159–175 (2019).

Article  CAS  PubMed  Google Scholar 

Vanmarcke, G., Demeke, M. M., Foulquie-Moreno, M. R. & Thevelein, J. M. Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates. Biotechnol. Biofuels 14, 92 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, S. R., Park, Y. C., Jin, Y. S. & Seo, J. H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31, 851–861 (2013).

Article  CAS  PubMed  Google Scholar 

Diao, L. et al. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol. 13, 110 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Runquist, D., Hahn-Hagerdal, B. & Radstrom, P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 3, 5 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Hou, J. et al. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae. J. Biosci. Bioeng. 121, 160–165 (2016).

Article  CAS  PubMed  Google Scholar 

Kuyper, M. et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5, 925–934 (2005).

Article  CAS  PubMed  Google Scholar 

Sato, T. K. et al. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genet. 12, e1006372 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Zhou, H., Cheng, J. S., Wang, B. L., Fink, G. R. & Stephanopoulos, G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 14, 611–622 (2012).

Article  CAS  PubMed  Google Scholar 

Frazzon, J. & Dean, D. R. Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr. Opin. Chem. Biol. 7, 166–173 (2003).

Article  CAS  PubMed  Google Scholar 

Garland, S. A., Hoff, K., Vickery, L. E. & Culotta, V. C. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J. Mol. Biol. 294, 897–907 (1999).

Article  CAS  PubMed  Google Scholar 

Rouault, T. A. & Tong, W. H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat. Rev. Mol. Cell Biol. 6, 345–351 (2005).

Article  CAS  PubMed  Google Scholar 

Dos Santos, L. V. et al. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Sci. Rep. 6, 38676 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Palermo, G. C. L., Coutoune, N., Bueno, J. G. R., Maciel, L. F. & Dos Santos, L. V. Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae. Microb. Biotechnol. 14, 2101–2115 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L., Chen, O. S., McVey Ward, D. & Kaplan, J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 276, 29515–29519 (2001).

Article  CAS  PubMed  Google Scholar 

Haro, R. & Rodriguez-Navarro, A. Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1564, 114–122 (2002).

Article  CAS  PubMed  Google Scholar 

Haro, R. & Rodrı́guez-Navarro, A. Functional analysis of the M2D helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochim. Biophys. Acta Biomembranes 1613, 1–6 (2003).

Article  CAS  Google Scholar 

Xu, X., Williams, T. C., Divne, C., Pretorius, I. S. & Paulsen, I. T. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol. Biofuels 12, 97 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Hohmann, S. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett. 583, 4025–4029 (2009).

Article  CAS  PubMed  Google Scholar 

Posas, F. & Saito, H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 17, 1385–1394 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horie, T., Tatebayashi, K., Yamada, R. & Saito, H. Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol. Cell. Biol. 28, 5172–5183 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsiao, W. Y., Wang, Y. T. & Wang, S. W. Fission yeast Puf2, a pumilio and FBF family RNA-binding protein, links stress granules to processing bodies. Mol. Cell. Biol. 40, e00589-19 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Porter, D. F., Koh, Y. Y., VanVeller, B., Raines, R. T. & Wickens, M. Target selection by natural and redesigned PUF proteins. Proc. Natl Acad. Sci. USA 112, 15868–15873 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerber, A. P., Herschlag, D. & Brown, P. O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Montllor-Albalate, C. et al. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biol. 21, 101064 (2019).

Comments (0)

No login
gif