Research Progress on NMDA Receptor Enhancement Drugs for the Treatment of Depressive Disorder

Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161):2299–312.

Article  PubMed  Google Scholar 

Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, et al. Major depressive disorder. Nat Rev Dis Primers. 2016;2:16065.

Article  PubMed  Google Scholar 

Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol. 2012;233:102–11.

Article  PubMed  Google Scholar 

Albert KM, Newhouse PA. Estrogen, stress, and depression: cognitive and biological interactions. Annu Rev Clin Psychol. 2019;15:399–423.

Article  PubMed  PubMed Central  Google Scholar 

Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther. 2024;9:30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:617–27.

Article  PubMed  PubMed Central  Google Scholar 

Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx). https://vizhub.healthdata.org/gbd-results. Accessed 4 Mar 2023.

WHO. The global burden of disease: 2004 update. Geneva: World Health Organization; 2008. https://www.who.int/publications/i/item/9789241563710. Accessed 2 Mar 2004.

Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398(10312):1700–12.

Sharp T. Molecular and cellular mechanisms of antidepressant action. Curr Top Behav Neurosci. 2013;14:309–25.

Article  CAS  PubMed  Google Scholar 

Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGrath T, Baskerville R, Rogero M, Castell L. Emerging evidence for the widespread role of glutamatergic dysfunction in neuropsychiatric diseases. Nutrients. 2022;14(5).

Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42(1):193–215.

Article  CAS  PubMed  Google Scholar 

Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheline YI, Liston C, McEwen BS. Parsing the hippocampus in depression: chronic stress, hippocampal volume, and major depressive disorder. Biol Psychiatry. 2019;85(6):436–8.

Article  PubMed  Google Scholar 

Pacheco A, Aguayo FI, Aliaga E, Muñoz M, García-Rojo G, Olave FA, et al. Chronic stress triggers expression of immediate early genes and differentially affects the expression of AMPA and NMDA subunits in dorsal and ventral hippocampus of rats. Front Mol Neurosci. 2017;10:244.

Article  PubMed  PubMed Central  Google Scholar 

Li CT, Yang KC, Lin WC. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front Psychiatry. 2018;9:767.

Article  PubMed  Google Scholar 

Manji HK, Moore GJ, Rajkowska G, Chen G. Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry. 2000;5(6):578–93.

Article  CAS  PubMed  Google Scholar 

Malykhin NV, Coupland NJ. Hippocampal neuroplasticity in major depressive disorder. Neuroscience. 2015;19(309):200–13.

Article  Google Scholar 

Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci. 1996;16(1):19–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bitanihirwe BK, Lim MP, Kelley JF, Kaneko T, Woo TU. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry. 2009;16(9):71.

Article  Google Scholar 

Tang W, Liu D, Traynelis SF, Yuan H. Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders. Neuropharmacology. 2020;15(177): 108247.

Article  Google Scholar 

Soto D, Olivella M, Grau C, Armstrong J, Alcon C, Gasull X, et al. l-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci Signal. 2019;12(586).

Davies SN, Lodge D. Evidence for involvement of N-methylaspartate receptors in “wind-up” of class 2 neurones in the dorsal horn of the rat. Brain Res. 1987;424(2):402–6.

Article  CAS  PubMed  Google Scholar 

Burgdorf JS, Zhang XL, Stanton PK, Moskal JR, Donello JE. Zelquistinel is an orally bioavailable novel NMDA receptor allosteric modulator that exhibits rapid and sustained antidepressant-like effects. Int J Neuropsychopharmacol. 2022;25(12):979–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavender E, Hirasawa-Fujita M, Domino EF. Ketamine’s dose related multiple mechanisms of actions: dissociative anesthetic to rapid antidepressant. Behav Brain Res. 2020;390: 112631.

Article  CAS  PubMed  Google Scholar 

Hashimoto K. Ketamine’s antidepressant action: beyond NMDA receptor inhibition. Expert Opin Ther Targets. 2016;20(11):1389–92.

Article  CAS  PubMed  Google Scholar 

McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry. 2021;178:383–99.

Article  PubMed  PubMed Central  Google Scholar 

Feeney A, Hock RS, Freeman MP, Flynn M, Hoeppner B, Iosifescu DV, et al. The effect of single administration of intravenous ketamine augmentation on suicidal ideation in treatment-resistant unipolar depression: results from a randomized double-blind study. Eur Neuropsychopharmacol. 2021;49:122–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith-Apeldoorn SY, Veraart JK, Spijker J, Kamphuis J, Schoevers RA. Maintenance ketamine treatment for depression: a systematic review of efficacy, safety, and tolerability. Lancet Psychiatry. 2022;9:907–21.

Article  PubMed  Google Scholar 

Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:68–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbert JR, Zarate CA Jr. Electrophysiological biomarkers of antidepressant response to ketamine in treatment-resistant depression: Gamma power and long-term potentiation. Pharmacol Biochem Behav. 2020;189: 172856.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Athira KVA, Mohan AS, Chakravarty S. Rapid acting antidepressants in the mTOR pathway: current evidence. Brain Res Bull. 2020;163:170–7.

Article  CAS  Google Scholar 

Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif