Achilli F, Boyle S, Kieran D, Chia R, Hafezparast M, Martin JE, Schiavo G, Greensmith L, Bickmore W, Fisher EM (2005) The SOD1 transgene in the G93A mouse model of amyotrophic lateral sclerosis lies on distal mouse chromosome 12. Amyotroph Lateral Scler 6:111–114. https://doi.org/10.1080/14660820510035351
Al-Chalabi A, Lewis CM (2011) Modelling the effects of penetrance and family size on rates of sporadic and familial disease. Human Hered 71:281–288. https://doi.org/10.1159/000330167
Al-Chalabi A, Calvo A, Chio A, Colville S, Ellis CM, Hardiman O, Heverin M, Howard RS, Huisman MH, Keren N (2014) Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol 13:1108–1113. https://doi.org/10.1016/S1474-4422(14)70219-4
Article PubMed PubMed Central Google Scholar
Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS, Nicolelis MA (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39. https://doi.org/10.1016/j.neuron.2009.06.014
Article PubMed PubMed Central CAS Google Scholar
Amalyan S, Tamboli S, Lazarevich I, Topolnik D, Bouman LH, Topolnik L (2022) Enhanced motor cortex output and disinhibition in asymptomatic female mice with C9orf72 genetic expansion. Cell Rep 40. https://doi.org/10.1016/j.celrep.2022.111043
Amani N, Soodi M, Daraei B, Dashti A (2016) Chlorpyrifos toxicity in mouse cultured cerebellar granule neurons at different stages of development: additive effect on glutamate-induced excitotoxicity. Cell J (Yakhteh) 18:464. https://doi.org/10.22074/cellj.2016.4575
Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, Singh M, Chen X, Thete MV, Walczak EM (2020) Generation of functional human 3D cortico-motor assembloids. Cell 183:1913–1929 e26. https://doi.org/10.1016/j.cell.2020.11.017
Article PubMed PubMed Central CAS Google Scholar
Andrew A, Zhou J, Gui J, Harrison A, Shi X, Li M, Guetti B, Nathan R, Tischbein M, Pioro EP (2021) Pesticides applied to crops and amyotrophic lateral sclerosis risk in the US. Neurotoxicology 87:128–135. https://doi.org/10.1016/j.neuro.2021.09.004
Article PubMed PubMed Central CAS Google Scholar
Antonov S, Novosadova E, Kobylyansky A, Illarioshkin S, Tarantul V, Grivennikov I (2019) Expression and functional properties of NMDA and GABA a receptors during differentiation of Human Induced Pluripotent Stem cells into ventral mesencephalic neurons. Biochem (Moscow) 84(3):310–320. https://doi.org/10.1134/S0006297919030131
Anzilotti S, Valente V, Brancaccio P, Franco C, Casamassa A, Lombardi G, Palazzi A, Conte A, Paladino S, Canzoniero LMT (2023) Chronic exposure to l-BMAA cyanotoxin induces cytoplasmic TDP-43 accumulation and glial activation, reproducing an amyotrophic lateral sclerosis-like phenotype in mice. Biomed Pharmacother 167:115503. https://doi.org/10.1016/j.biopha.2023.115503
Article PubMed CAS Google Scholar
Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF (2020) Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases. Front Cell Neurosci 14:90. https://doi.org/10.3389/fncel.2020.00090
Article PubMed PubMed Central CAS Google Scholar
Armbruster B, Roth B (2005) Creation of designer biogenic amine receptors via directed molecular evolution. 30:S265-S265
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci 104:5163–5168. https://doi.org/10.1073/pnas.0700293104
Arnold F, Burns M, Chiu Y, Carvalho J, Nguyen A, Ralph P, La Spada A, Bennett C (2023) Chronic BMAA exposure combined with TDP-43 mutation elicits motor neuron dysfunction phenotypes in mice. Neurobiol Aging 126:44–57. https://doi.org/10.1016/j.neurobiolaging.2023.02.010
Article PubMed CAS Google Scholar
Autar K, Guo X, Rumsey JW, Long CJ, Akanda N, Jackson M, Narasimhan NS, Caneus J, Morgan D, Hickman JJ (2022) A functional hiPSC-cortical neuron differentiation and maturation model and its application to neurological disorders. Stem Cell Rep 17:96–109. https://doi.org/10.1016/j.stemcr.2021.11.009
Balusu S, Praschberger R, Lauwers E, De Strooper B, Verstreken P (2023) Neurodegeneration cell per cell. Neuron 111:767–786. https://doi.org/10.1016/j.neuron.2023.01.016
Article PubMed CAS Google Scholar
Bardelli D, Sassone F, Colombrita C, Volpe C, Gumina V, Peverelli S, Catusi I, Ratti A, Silani V, Bossolasco P (2020) Reprogramming fibroblasts and peripheral blood cells from a C9ORF72 patient: a proof-of‐principle study. J Cell Mol Med 24:4051–4060. https://doi.org/10.1111/jcmm.15048
Article PubMed PubMed Central CAS Google Scholar
Bardy C, Van Den Hurk M, Kakaradov B, Erwin J, Jaeger B, Hernandez RV, Eames T, Paucar A, Gorris M, Marchand C (2016) Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol Psychiatry 21:1573–1588. https://doi.org/10.1038/mp.2016.158
Article PubMed PubMed Central CAS Google Scholar
Barral S, Kurian MA (2016) Utility of induced pluripotent stem cells for the study and treatment of genetic diseases: focus on childhood neurological disorders. Front Mol Neurosci 9:78. https://doi.org/10.3389/fnmol.2016.00078
Article PubMed PubMed Central CAS Google Scholar
Bauersachs G, Bengtson P, Weiss U, Hellwig A, García-Vilela C, Zaremba B, Kaessmann H, Pruunsild P, Bading H (2021) NMDA receptor-mediated preconditioning mitigates excitotoxicity in human iPSC-derived brain organoids. Neuroscience. https://doi.org/10.1016/j.neuroscience.2021.12.026
Bensimon G, Lacomblez L, Meininger V, Group ARS (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330:585–591. https://doi.org/10.1056/nejm199403033300901
Article PubMed CAS Google Scholar
Bianchi F, Malboubi M, Li Y, George JH, Jerusalem A, Szele F, Thompson MS, Ye H (2018) Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem cell Res 32:126–134. https://doi.org/10.1016/j.scr.2018.09.006
Article PubMed CAS Google Scholar
Buccino AP, Yuan X, Emmenegger V, Xue X, Gänswein T, Hierlemann A (2022) An automated method for precise axon reconstruction from recordings of high-density micro-electrode arrays. J Neural Eng 19:026026. https://doi.org/10.1088/1741-2552/ac59a2
Article PubMed PubMed Central Google Scholar
Burley S, Beccano-Kelly DA, Talbot K, Llana OC, Wade-Martins R (2022) Hyperexcitability in young iPSC-derived C9ORF72 mutant motor neurons is associated with increased intracellular calcium release. Sci Rep 12:7378. https://doi.org/10.1038/s41598-022-09751-3
Article PubMed PubMed Central CAS Google Scholar
Bursch F, Kalmbach N, Naujock M, Staege S, Eggenschwiler R, Abo-Rady M, Japtok J, Guo W, Hensel N, Reinhardt P (2019) Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Hum Mol Genet 28:2835–2850. https://doi.org/10.1093/hmg/ddz107
Article PubMed CAS Google Scholar
Burton B, Collins K, Brooks J, Marx K, Renner A, Wilcox K, Moore E, Osowski K, Riley J, Rowe J, Pawlus M (2023) The biotoxin BMAA promotes dysfunction via distinct mechanisms in neuroblastoma and glioblastoma cells. PLoS ONE 18:e0278793. https://doi.org/10.1371/journal.pone.0278793
Article PubMed PubMed Central CAS Google Scholar
Chear S, Perry S, Wilson R, Bindoff A, Talbot J, Ware TL, Grubman A, Vickers JC, Pébay A, Ruddle JB (2022) Lysosomal alterations and decreased electrophysiological activity in CLN3 disease patient-derived cortical neurons. Dis Models Mech 15:dmm049651. https://doi.org/10.1242/dmm.049651
Chen Y (2018) Induced pluripotent stem cell-derived human glutamatergic neurons as a platform for mechanistic assessment of inducible excitotoxicity in drug discovery. Neurotoxins. https://doi.org/10.5772/intechopen.77043
Chiò A, Mazzini L, D’alfonso S, Corrado L, Canosa A, Moglia C, Manera U, Bersano E, Brunetti M, Barberis M, Veldink JH, Van Den Berg LH, Pearce N, Sproviero W, Mclaughlin R, Vajda A, Hardiman O, Rooney J, Mora G, Calvo A, Al-Chalabi A (2018) The multistep hypothesis of ALS revisited. Neurology 91:e635–e642. https://doi.org/10.1212/wnl.0000000000005996
Article PubMed PubMed Central Google Scholar
Clark RM, Blizzard CA, Young KM, King AE, Dickson TC (2017) Calretinin and neuropeptide y interneurons are differentially altered in the motor cortex of the SOD1 G93A mouse model of ALS. Sci Rep 7:44461. https://doi.org/10.1038/srep44461
Comments (0)