Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., Aggoune, H.M., Haas, H., Fletcher, S., Hepsaydir, E.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)
Dang, X.-T., Le, M.T.P., Nguyen, H.V., Chatzinotas, S., Shin, O.-S.: Optimal user pairing approach for NOMA-based cell-free massive MIMO systems. IEEE Trans. Veh. Technol. 72(4), 4751–4765 (2023)
Kryder, M.H., Gage, E.C., McDaniel, T.W., Challener, W.A., Rottmayer, R.E., Ju, G., Hsia, Y.-T., Erden, M.F.: Heat assisted magnetic recording. Proc. IEEE 96(11), 1810–1835 (2008)
Albrecht, T.R., et al.: Bit-patterned magnetic recording: theory, media fabrication, and recording performance. IEEE Trans. Magn. 51(5), 1–42 (2015)
Lu, C.Y., Hsieh, K.Y., Liu, R.: Future challenges of flash memory technologies. Microelectron. Eng. 86(3), 283–286 (2008)
Ping, Z., Ma, D., Huang, X., Chen, S., Liu, L., Guo, F., Zhu, S.J., Shen, Y.: Carbon-based archiving: current progress and future prospects of DNA-based data storage. GigaScience 8(6), giz075 (2019)
Hesselink, L., Orlov, S.S., Bashaw, M.C.: Holographic data storage systems. Proc. IEEE 92(8), 1231–1280 (2004)
Zhu, J., Zou, F., Wang, L., Lu, X., Zhao, S.: Multiplexing perfect optical vortex for holographic data storage. Photonics 10(7), 720 (2023)
Hosaka, M., Ishii, T., Hoshizawa, T.: Volume-recorded hologram modeling, point-spread function analysis, and segmented adaptive equalization for holographic data storage. Appli. Opt. 58(17), 4678–4686 (2019)
Psaltis, D., Levene, M., Pu, A., Barbastathis, G., Curtis, K.: Holographic storage using shift multiplexing. Opt. Lett. 20(7), 782–784 (1995)
Nobukawa, T., Wani, Y., Nomura, T.: Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage. Opt. Lett. 40(10), 2161–2164 (2015)
Takabayashi, M., Okamoto, A., Eto, T., Okamoto, T.: Shift-multiplexed self-referential holographic data storage. Appl. Opt. 53(20), 4375–4381 (2014)
d’Auria, L., Huignard, J.P., Slezak, C., Spitz, E.: Experimental holographic read-write memory using 3-d storage. Appl. Opt. 13(4), 808–818 (1974)
Matoba, O., Javidi, B.: Encrypted optical storage with angular multiplexing. Appl. Opt. 38(35), 7288–7293 (1999)
Utsugi, T.: Holographic scattering in an angular-multiplexed hologram on a photopolymer. Appl. Opt. 57(3), 527–537 (2018)
Goto, Y., Okamoto, A., Takabayasho, M., Ogawa, K., Tomita, A.: Experimental implementation of multiplexing/demultiplexing in digital images using virtual phase conjugation for holographic data storage. Opt. Rev. 25, 549–554 (2018)
Nguyen, T.A., Lee, J.: Simplified two-dimensional generalized partial response target of holographic data storage channel. Appl. Sci. 12(8), 4070 (2022)
Wilson, W.Y.H., Immink, K.A.S., Xi, X.B., Chong, T.C.: Efficient coding technique for holographic storage using the method of guided scrambling. Proc. SPIE 4090, 191–196 (2000)
Koo, K., Kim, S.V., Jeong, J.J., Kim, S.W.: Two-dimensional soft output viterbi algorithm with a variable reliability factor for holographic data storage. Jpn. J. Appl. Phys. 52, 09LE03 (2013)
Shelby, R.M., Hoffnagle, J.A., Burr, G.W., Jefferson, C.M., Bernal, M.P., Coufal, M.P., Grygier, R.K., Gunther, H., Macfarlane, R.M., Sincerbox, G.T.: Pixel-matched holographic data storage with megabit pages. Opt. Lett. 22, 1509–1511 (1997)
Bernal, M.P., Burr, G.W., Coufal, H., Quintanilla, M.: Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems. Appl. Opt. 37, 5377–5385 (1998)
Wang, Z., Jin, G.F., He, Q.S., Wu, M.X.: Simultaneous defocusing of the aperture and medium on a spectroholographic storage system. Appl. Opt. 46, 5770–5778 (2007)
Hara, M., Tanaka, K., Tokuyama, K., Toishi, K., Hirooka, K., Fukumoto, A.: Linear reproduction of a holographic storage channel using coherent addition of optical dc components. Jpn. J. Appl. Phys. 47, 5885 (2008)
Ishii, T., Fujimura, R.: Interpixel crosstalk cancellation on holographic memory. Jpn. J. Appl. Phys. 56, 09NA10 (2017)
Nobukawa, T., Barada, D., Nomura, T., Fukuda, T.: Orthogonal polarization encoding for reduction of interpixel cross talk in holographic data storage. Opt. Express 25, 22425–22439 (2017)
Kim, J., Lee, J.: Two-dimensional 5:8 modulation code for holographic data storage. Jpn. J. Appl. Phys. 48, 03A031 (2009)
Kim, N.Y., Lee, J., Lee, J.: Rate 5/9 two-dimensional pseudo-balanced for holographic data storage systems. Jpn. J. Appl. Phys. 45, 1293 (2009)
Chou, W.C., Neifeld, M.A.: Interleaving and error correction in volume holographic memory systems. Appl. Opt. 37, 6951–6968 (1998)
Kim, J., Lee, J.: Partial response maximum-likelihood detections using two-dimensional soft output viterbi algorithm with two-dimensional equalizer for holographic data storage. Jpn. J. Appl. Phys. 48, 03A033 (2009)
Koo, K., Kim, S.-Y., Kim, S.W.: Modified two-dimensional soft output viterbi algorithm with two-dimensional partial response target for holographic data storage. Jpn. J. Appl. Phys. 51, 08JB03 (2012)
Koo, K., Kim, S.-Y., Jeong, J.J., Kim, S.W.: Data page reconstruction method based on two-dimensional soft output Viterbi algorithm with self reference for holographic data storage. Opt. Rev. 21, 591–596 (2014)
Cideciyan, R., Dolivo, F., Hermann, R., Hirt, W., Schott, W.A.: PRML system for digital magnetic recording. IEEE J. Sel. Areas Commun. 10, 38–56 (1992)
Forney, G.D.: The viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)
Article MathSciNet Google Scholar
Hagenauer, J., Hoeher, P.: A Viterbi algorithm with soft-decision outputs and its applications. In: 1989 IEEE Global telecommunications conference and exhibition ‘communications technology for the 1990s and Beyond.’ IEEE, Dallas, TX, USA (1989)
Bahl, L.R., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theor. 20, 284–287 (1974)
Article MathSciNet Google Scholar
Kim, J., Lee, J.: Two-dimensional soft output Viterbi algorithm with noise filter for patterned media storage. J. Appl. Phys. 109(7), 07B742 (2011)
Kim, J., Lee, J.: Two-dimensional SOVA and LDPC codes for holographic data storage system. IEEE Trans. Magn. 45, 2260–2263 (2009)
Nguyen, T.A., Lee, J.: Effective generalized partial response target and serial detector for two-dimensional bit-patterned media recording channel including track mis-registration. Appl. Sci. 10, 5738 (2020)
Nguyen, T.A., Lee, J.: Serial maximum a posteriori detection of two-dimensional generalized partial response target for holographic data storage systems. Appl. Sci. 13(9), 5247 (2023)
Nguyen, T.A., Lee, J.: Iterative parallel–serial detection structure using map algorithm for bit-patterned media recording systems. IEEE Trans. Magn. 59(3), 1–6 (2023)
Nguyen, T.A., Lee, J.: Two-dimensional interference estimator with parallel structure for holographic data storage channel. Appl. Sci. 12, 2112 (2022)
Kim, K., Kim, S.H., Koo, G., Seo, M.S., Kim, S.W.: Decision feedback equalizer for holographic data storage. Appl. Opt. 57, 4056–4066 (2018)
Comments (0)