Luminescence properties and temperature characteristics of Yb3+/Nd3+/Ho3+ triple doped BaGeTeO6 up-conversion phosphors under 980 nm excitation

Nemova, G., Kashyap, R.: Laser cooling with rare-earth-doped direct band-gap semiconductors. J. Opt. Soc. Am. B Opt. Phys. 30, 1141–1147 (2013). https://doi.org/10.1117/12.2001935

Article  ADS  Google Scholar 

Jha, A., Richards, B., Jose, G., Teddy-Fernandez, T., et al.: Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Prog. Mater. Sci. 57, 1426–1491 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.003

Article  Google Scholar 

Kumar, G.A., Pokhrel, M., Sardar, D.K.: Rare earth based upconverting materials for solar cell application. Mater. Lett. 68, 395–398 (2012). https://doi.org/10.1557/OPL.2012.1269

Article  ADS  Google Scholar 

Bouzigues, C., Gacoin, T., Alexandrou, A.: Biological applications of rare-earth m based nanoparticles. ACS Nano 5, 8488–8505 (2011). https://doi.org/10.1021/nn202378b

Article  Google Scholar 

Zhang, F., Haushalter, R.C., Haushalter, R.W., et al.: Rare-earth upconverting nanobarcodes for multiplexed biological detection. Small 7, 1972–1976 (2011). https://doi.org/10.1002/smll.201100629

Article  Google Scholar 

Li, Z., Zhang, S., Xu, Q., et al.: Long persistent phosphor SrZrO3:Yb3+ with dual emission in NUV and NIR region: a combined experimental and first-principles methods. J. Alloys Compd. 766, 663–671 (2018). https://doi.org/10.1002/adfm.202003619

Article  Google Scholar 

Bandurkin, G.A., Lysanova, G.V., Krut’ko, V.A., Komova, M.G.: Cationic networks in the structures of rare earth germanates and borogermanates: typology of cationic networks in the structures of rare earth compounds. Russ. J. Inorg. Chem. 55, 238–246 (2010). https://doi.org/10.1134/S0036023610020166

Article  Google Scholar 

Becke, U.W., Felsche, J.: Phases and structural relations of the rare earth germanates RE2Ge2O7, RE ≡ La-Lu. J. Less Common Met. 128, 269–280 (1987). https://doi.org/10.1016/0022-5088(87)90215-3

Article  Google Scholar 

Suo, H., Guo, C.F., Li, T.: Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21:Er3+/Yb3+. J. Phys. Chem. C 120, 2914–2924 (2016). https://doi.org/10.1021/acs.jpcc.5b11786

Article  Google Scholar 

Perrella, R.V., Ribeiro, I.C., Campos-Junior, P.H.A., et al.: CaTiO3:Er3+:Yb3+ upconversion from 980 nm to 1550 nm excitation and its potential as cells luminescent probes. Mater. Chem. Phys. 223, 391–397 (2019)

Article  Google Scholar 

Wang, H., Jiang, T., Xing, M.M., et al.: Investigation on the thermal effects of NaYF4:Er under 1550 nm irradiation. Ceram. Int. l41, 259–263 (2015). https://doi.org/10.1039/C7RA06191A

Article  Google Scholar 

Cheng, Y.M., Yang, Z.W., Liao, J.Y., et al.: Color tunable upconversion emission in CeO2:Yb, Er three -dimensional ordered macroporous materials. J. Rare Earths 33, 599–603 (2015). https://doi.org/10.1016/S1002-0721(14)60459-2

Article  Google Scholar 

Su, M.Y., Zhou, Y.F., Wang, K., et al.: Effect of Yb3+ concentration on upconversion luminescence of AlON:Er3+ phosphors. J. Rare Earths 33, 227–230 (2015). https://doi.org/10.1016/S1002-0721(14)60407-5

Article  Google Scholar 

Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139 (2004). https://doi.org/10.1021/cr020357g

Article  Google Scholar 

Bai, T.T., Zhao, L., Niu, Y.P., et al.: Synthesis and photoluminescence properties of BaGeTeO6:Eu3+ redemitting phosphor for n-UV Light Emitting Diodes. J. Lumin. 209, 52–56 (2019). https://doi.org/10.1016/j.jlumin.2019.01.025

Article  Google Scholar 

Song, F.: Novel red-emitting BaGeTeO6:Sm3+ phosphors with high color purity for NUV excited with white LEDs. J. Mater. Sci. Mater. Electron. 31, 14658–14664 (2020). https://doi.org/10.1007/s10854-020-04028-9

Article  Google Scholar 

Buddhudu, S., Bryan Jt, F.: Optical transitions of Er3+:La2O2S and Er3+:Y2O2S. J. Less Common Met. 147(2), 213 (1989). https://doi.org/10.1016/0022-5088(89)90195-1

Article  Google Scholar 

Kisluik, P., Krupke, W.F., Gruber, J.B.: Crystal-field splitting of trivalent thulium and erbium J levels in yttrium oxide. J. Chem. Phys. 40, 3606 (1964). https://doi.org/10.1063/1.1725734

Article  ADS  Google Scholar 

Xiao, Q., Dong, X.Y., Yin, X.M., et al.: Promising Yb3+-sensitized La2Mo2O9 phosphors for multi-color up-conversion luminescence and optical temperature sensing. J. Alloys Compd. 25, 162686 (2022). https://doi.org/10.1016/j.jlumin.2022.119451

Article  Google Scholar 

Kaczmarek, A.M., Suta, M., Rijckaert, H., et al.: High temperature (nano)thermometers based on LiLuF4:Er3+, Yb3+ nano- and microcrystals. Confounded results for core–shell nanocrystals. J. Mater. Chem. C. 9, 3589–3600 (2021). https://doi.org/10.1039/D0TC05865C

Article  Google Scholar 

Tang, J., Du, P., Li, W.P., et al.: Boosted thermometric performance in NaGdF4:Er3+/Yb3+ upconverting nanorods by Fe3+ ions doping for contactless nanothermometer based on thermally and non-thermally coupled levels. J. Lumin. 224, 117296 (2020). https://doi.org/10.1016/j.jlumin.2020.117296

Article  Google Scholar 

Suo, H., Zhao, X.Q., Zhang, Y.: Ultra-sensitive optical nano-thermometer LaPO4: Yb3+/Nd3+ based on thermo-enhanced NIR-to-NIR emissions.C.F. Guo. Chem. Eng. J. 389, 124506 (2020). https://doi.org/10.1016/j.cej.2020.124506

Article  Google Scholar 

Lin, M., Xie, L.J., Wang, Z.J., et al.: Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry. J. Mater. Chem. C. 7, 2971–2977 (2019). https://doi.org/10.1039/C8TC05669B

Article  Google Scholar 

Li, K., Zhu, D.M., Lian, Z.: Up-conversion luminescence and optical temperature sensing properties in novel KBaY(MoO4)3:Yb3+, Er3+ materials for temperature sensors. J. Alloy. Compd. 816, 152554 (2020). https://doi.org/10.1016/j.jallcom.2019.152554

Article  Google Scholar 

Gao, D., Chen, L.H.: Effect of microwave-assisted hydrothermal reaction parameters on phase, morphology and luminescence properties of NaYF4: Dy3+ phosphors. Chinese J. Inorg. Chem. 35, 1623–1634 (2019). https://doi.org/10.1016/j.cattod.2015.10.001

Article  Google Scholar 

Zhang, H., Gao, Z.Y., Li, G.G., et al.: A ratiometric optical thermometer with multi-color emission and high sensitivity based on double perovskite LaMg0.402Nb0.598O3: Pr3+ thermochromic phosphors. Chem. Eng. J. 380, 122491 (2020). https://doi.org/10.1016/j.cej.2019.122491

Article  Google Scholar 

Liu, S.Y., Gao, D.: Experimental optimization design synthesis and up-conversion luminescence properties of YNbO4:Ho3+/Yb3+. J. Mod. Opt. 70, 310–321 (2023). https://doi.org/10.1080/09500340.2023.2234505

Article  ADS  Google Scholar 

Gao, D., Liu, S.Y.: Auto-combustion synthesis of Sm3+-doped NaYF4 phosphors: Concentration quenching, optical transition and luminescent properties. Mater. Chem. Phys. 197, 127388–127396 (2023). https://doi.org/10.1016/j.matchemphys.2023.127388

Article  Google Scholar 

Liu, S.Y., Zhang, J.S.: Synthesis and long afterglow characteristics of Sr2MgSi2O7:Eu2+, Dy3+ by experimental optimization design. Acta Phys. Sinica. 68, 053301–053305 (2019). https://doi.org/10.7498/aps.68.20182015

Article  Google Scholar 

Yin, X.M., Wang, H.: High color purity red emission of Y2Ti2O7:Yb3+, Er3+ under 1550 and 980 nm excitation. J. Lumin. 182, 183–188 (2017). https://doi.org/10.1016/j.jlumin.2016.10.032

Article  Google Scholar 

Liu, S.Y., Gao, D., Wang, L., et al.: Influence of Tm3+ concentration on long afterglow and photostimulated luminescence properties of Eu2+-doped Sr1Al2Si2O8 blue phosphors. Russ. Phys. J. 66, 655–665 (2023). https://doi.org/10.1007/s11182-023-02989-y

Article  Google Scholar 

Grzyb, T., Balabhadra, S.: Upconversion luminescence in BaYF5, BaGdF5 and BaLuF5 nanocrystals doped with Yb3+/Ho3+, Yb3+/Er3+ or Yb3+/Tm3+ ions. J. Alloys Compd. 649, 606–616 (2015). https://doi.org/10.1016/j.jallcom.2015.07.151

Article  Google Scholar 

Wang, X., Li, X.P., Yu, H.Q., et al.: Effects of Bi3+ on down-/up-conversion luminescence, temperature sensing and optical transition properties of Bi3+/Er3+ co-doped YNbO4 phosphors. J. Rare. Earth. 40, 381–389 (2022). https://doi.org/10.1016/j.jre.2020.11.001

Article  Google Scholar 

Jiang, X.L., Zhang, Z.Y., Zhang, T.Q., et al.: Enhanced up-conversion luminescence intensity of NaY(MoO4)2: Ho3+/Yb3+ phosphor by doping with Mg2+ ions for use in high-efficiency optical temperature sensor. J. Lumin. 245, 118759 (2022). https://doi.org/10.1016/j.jlumin.2022.118759

Article  Google Scholar 

Guo, Y., Wang, D., He, Y.: Fabrication of highly porous Y2O3: Ho, Yb ceramic and its thermometric applications. J. Alloy. Compd. 741, 1158–1162 (2018). https://doi.org/10.1016/j.jallcom.2018.01.229

Article  Google Scholar 

Liu, W., Wang, X., Zhu, Q., et al.: Upconversion luminescence and favorable temperature sensing performance of eulytite-type Sr3Y(PO4)3:Yb3+/Ln3+ phosphors (Ln=Ho, Er, Tm). Sci. Technol. Adv. Mater. 20, 949–963 (2019). https://doi.org/10.1080/14686996.2019.1659090

Article  Google Scholar 

Savchuk, O.A., Carvajal, J.J., Pujol, M.C., et al.: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C 119, 18546–18558 (2015). https://doi.org/10.1039/c7nr08758f

Article  Google Scholar 

Zhang, J., Zhang, Y., Jiang, X.: Investigations on upconversion luminescence of K3Y(PO4)2:Yb3+-Er3+/Ho3+/Tm3+ phosphors for optical

Comments (0)

No login
gif