Metabolic pathways for removing reactive aldehydes are diminished in the skeletal muscle during heart failure

von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol. 2017;14:323–41. https://doi.org/10.1038/nrcardio.2017.51.

Article  CAS  Google Scholar 

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975. https://doi.org/10.1002/ejhf.592.

Article  PubMed  Google Scholar 

Bekfani T, Pellicori P, Morris DA, Ebner N, Valentova M, Steinbeck L, Wachter R, Elsner S, Sliziuk V, Schefold JC, et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016;222:41–6. https://doi.org/10.1016/j.ijcard.2016.07.135.

Article  PubMed  Google Scholar 

Fulster S, Tacke M, Sandek A, Ebner N, Tschope C, Doehner W, Anker SD, von Haehling S. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34:512–9. https://doi.org/10.1093/eurheartj/ehs381.

Article  PubMed  CAS  Google Scholar 

Hryniewicz K, Androne AS, Hudaihed A, Katz SD. Partial reversal of cachexia by beta-adrenergic receptor blocker therapy in patients with chronic heart failure. J Card Fail. 2003;9:464–8. https://doi.org/10.1016/s1071-9164(03)00582-7.

Article  PubMed  CAS  Google Scholar 

Lainscak M, Keber I, Anker SD. Body composition changes in patients with systolic heart failure treated with beta blockers: a pilot study. Int J Cardiol. 2006;106:319–22. https://doi.org/10.1016/j.ijcard.2005.01.061.

Article  PubMed  Google Scholar 

Pugh PJ, Jones TH, Channer KS. Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur Heart J. 2003;24:909–15. https://doi.org/10.1016/s0195-668x(03)00083-6.

Article  PubMed  CAS  Google Scholar 

Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. 2006;27:57–64. https://doi.org/10.1093/eurheartj/ehi443.

Article  PubMed  CAS  Google Scholar 

Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, Mammi C, Piepoli M, Fini M, Rosano GM. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54:919–27. https://doi.org/10.1016/j.jacc.2009.04.078.

Article  PubMed  CAS  Google Scholar 

Okutsu M, Call JA, Lira VA, Zhang M, Donet JA, French BA, Martin KS, Peirce-Cottler SM, Rembold CM, Annex BH, et al. Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure. Circ Heart Fail. 2014;7:519–30. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000841.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2014;49:59–68. https://doi.org/10.3109/10409238.2013.857291.

Article  PubMed  CAS  Google Scholar 

Glass DJ. Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care. 2010;13:225–9. https://doi.org/10.1097/mco.0b013e32833862df.

Article  PubMed  CAS  Google Scholar 

Abrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxid Med Cell Longev. 2018;2018: 2063179. https://doi.org/10.1155/2018/2063179.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121–9. https://doi.org/10.1016/j.biocel.2013.04.023.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol. 2016;311:C392-403. https://doi.org/10.1152/ajpcell.00125.2016.

Article  PubMed  Google Scholar 

Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S, Belia S, Wannenes F, Nicoletti C, Del Prete Z, et al. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab. 2008;8:425–36. https://doi.org/10.1016/j.cmet.2008.09.002.

Article  PubMed  Google Scholar 

Rahman M, Mofarrahi M, Kristof AS, Nkengfac B, Harel S, Hussain SN. Reactive oxygen species regulation of autophagy in skeletal muscles. Antioxid Redox Signal. 2014;20:443–59. https://doi.org/10.1089/ars.2013.5410.

Article  PubMed  CAS  Google Scholar 

Rodney GG, Pal R, Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med. 2016;98:103–12. https://doi.org/10.1016/j.freeradbiomed.2016.05.010.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cross JV, Templeton DJ. Regulation of signal transduction through protein cysteine oxidation. Antioxid Redox Signal. 2006;8:1819–27. https://doi.org/10.1089/ars.2006.8.1819.

Article  PubMed  CAS  Google Scholar 

Cleland JG, Coletta AP, Freemantle N, Velavan P, Tin L, Clark AL. Clinical trials update from the American College of Cardiology meeting: CARE-HF and the remission of heart failure, Women’s Health Study, TNT, COMPASS-HF, VERITAS, CANPAP, PEECH and PREMIER. Eur J Heart Fail. 2005;7:931–6. https://doi.org/10.1016/j.ejheart.2005.04.002.

Article  PubMed  Google Scholar 

Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47. https://doi.org/10.1001/jama.293.11.1338.

Article  PubMed  Google Scholar 

Baba SP, Hellmann J, Srivastava S, Bhatnagar A. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE). Chem Biol Interact. 2011;191:357–63. https://doi.org/10.1016/j.cbi.2011.01.024.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baba SP, Hoetker JD, Merchant M, Klein JB, Cai J, Barski OA, Conklin DJ, Bhatnagar A. Role of aldose reductase in the metabolism and detoxification of carnosine-acrolein conjugates. J Biol Chem. 2013;288:28163–79. https://doi.org/10.1074/jbc.M113.504753.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Conklin DJ, Guo Y, Jagatheesan G, Kilfoil PJ, Haberzettl P, Hill BG, Baba SP, Guo L, Wetzelberger K, Obal D, et al. Genetic deficiency of glutathione S-transferase P increases myocardial sensitivity to ischemia-reperfusion injury. Circ Res. 2015;117:437–49. https://doi.org/10.1161/CIRCRESAHA.114.305518.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baba SP, Zhang D, Singh M, Dassanayaka S, Xie Z, Jagatheesan G, Zhao J, Schmidtke VK, Brittian KR, Merchant ML, et al. Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice. J Mol Cell Cardiol. 2018;118:183–92. https://doi.org/10.1016/j.yjmcc.2018.04.002.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barrera G, Pizzimenti S, Ciamporcero ES, Daga M, Ullio C, Arcaro A, Cetrangolo GP, Ferretti C, Dianzani C, Lepore A, et al. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxid Redox Signal. 2015;22:1681–702. https://doi.org/10.1089/ars.2014.6166.

Article  PubMed  CAS 

Comments (0)

No login
gif