Visual predictive check of longitudinal models and dropout

Post TM, Freijer JI, Ploeger BA, Danhof M (2008) Extensions to the visual predictive check to facilitate model performance evaluation. J Pharmacokinet Pharmacodyn 35(2):185–202. https://doi.org/10.1007/s10928-007-9081-1

Article  PubMed  PubMed Central  Google Scholar 

Bergstrand M, Hooker AC, Wallin JE, Karlsson MO (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13(2):143–151

Article  PubMed  PubMed Central  Google Scholar 

Hu C, Sale M (2003) A joint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet Pharmacodyn 30(1):83–103

Article  PubMed  Google Scholar 

Ruiz-Garcia A, Baverel P, Bottino D, Dolton M, Feng Y, Gonzalez-Garcia I, Kim J, Robey S, Singh I, Turner D, Wu SP, Yin D, Zhou D, Zhu H, Bonate P (2023) A comprehensive regulatory and industry review of modeling and simulation practices in oncology clinical drug development. J Pharmacokinet Pharmacodyn 50(3):147–172. https://doi.org/10.1007/s10928-023-09850-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandema JW, Stanski DR (1996) Population pharmacodynamic model for ketorolac analgesia. Clin Pharmacol Ther 60(6):619–635. https://doi.org/10.1016/S0009-9236(96)90210-6

Article  CAS  PubMed  Google Scholar 

Hu C, Szapary PO, Yeilding N, Zhou H (2011) Informative dropout modeling of longitudinal ordered categorical data and model validation: application to exposure-response modeling of physician’s global assessment score for ustekinumab in patients with psoriasis. J Pharmacokinet Pharmacodyn 38(2):237–260

Article  PubMed  Google Scholar 

Kümmel A, Bonate PL, Dingemanse J, Krause A (2018) Confidence and prediction intervals for pharmacometric models. CPT Pharmacometrics Syst Pharmacol 7(6):360–373. https://doi.org/10.1002/psp4.12286

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu C (2022) Variability and uncertainty: interpretation and usage of pharmacometric simulations and intervals. J Pharmacokinet Pharmacodyn 49(5):487–491. https://doi.org/10.1007/s10928-022-09817-9

Article  PubMed  Google Scholar 

Karlsson MO, Holford NHG (2008) A Tutorial on Visual Predictive Checks. www.page-meeting.org/?abstract=1434.

Nguyen TH, Mouksassi MS, Holford N, Al-Huniti N, Freedman I, Hooker AC, John J, Karlsson MO, Mould DR, Perez Ruixo JJ, Plan EL, Savic R, van Hasselt JG, Weber B, Zhou C, Comets E, Mentre F et al (2017) Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacometrics Syst Pharmacol 6(2):87–109. https://doi.org/10.1002/psp4.12161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yano Y, Beal SL, Sheiner LB (2001) Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn 28(2):171–192. https://doi.org/10.1023/a:1011555016423

Article  CAS  PubMed  Google Scholar 

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639. https://doi.org/10.1056/NEJMoa1507643

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135. https://doi.org/10.1056/NEJMoa1504627

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. https://doi.org/10.1016/j.ejca.2008.10.026

Article  CAS  PubMed  Google Scholar 

Feng Y, Wang X, Suryawanshi S, Bello A, Roy A (2019) Linking tumor growth dynamics to survival in ipilimumab-treated patients with advanced melanoma using mixture tumor growth dynamic modeling. CPT Pharmacometrics Syst Pharmacol 8(11):825–834. https://doi.org/10.1002/psp4.12454

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beal SL (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28(5):481–504

Article  CAS  PubMed  Google Scholar 

Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data, 2nd edn. Springer, New York

Book  Google Scholar 

Diggle P, Kenward MG (1994) Informative drop-out in longitudinal data-analysis. J Roy Stat Soc C 43(1):49–93

Google Scholar 

Rizopoulos D (2012) Joint models for longitudinal and time-to-event data. Chapman and Hall/CRC, New York

Book  Google Scholar 

Beal SL, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides (1989–2009). Icon Development Solutions, Ellicott City

Google Scholar 

Hu C (2014) Exposure-response modeling of clinical end points using latent variable indirect response models. CPT Pharmacometrics Syst Pharmacol 3:e117. https://doi.org/10.1038/psp.2014.15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vu TC, Nutt JG, Holford NH (2012) Progression of motor and nonmotor features of Parkinson’s disease and their response to treatment. Br J Clin Pharmacol 74(2):267–283. https://doi.org/10.1111/j.1365-2125.2012.04192.x

Article  PubMed  PubMed Central  Google Scholar 

Goto M, Perencevich EN, Ohl ME (2018) Immortal time bias in assessing evidence-based care processes for staphylococcus aureus bacteremia-reply. JAMA Intern Med 178(2):296. https://doi.org/10.1001/jamainternmed.2017.7950

Article  PubMed  Google Scholar 

Hu C, Vetter M, Vermeulen A, Ouellet D (2023) Latent variable indirect response modeling of clinical efficacy endpoints with combination therapy: application to guselkumab and golimumab in patients with ulcerative colitis. J Pharmacokinet Pharmacodyn 50(2):133–144. https://doi.org/10.1007/s10928-022-09841-9

Article  CAS  PubMed  Google Scholar 

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A (2013) Bayesian data analysis, 3rd ed. Chapman & Hall/CRC; Texts in statistical science, 3 edn. CRC Press, Philadelphia

Marier JF, Teuscher N, Mouksassi MS (2022) Evaluation of covariate effects using forest plots and introduction to the coveffectsplot R package. CPT Pharmacometrics Syst Pharmacol 11(10):1283–1293. https://doi.org/10.1002/psp4.12829

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif