Andrä J, Jakovkin I, Grötzinger J, Hecht O, Krasnosdembskaya AD, Goldmann T, Gutsmann T, Leippe M (2008) Structure and mode of action of the antimicrobial peptide arenicin. Biochem J 410(1):113–122. https://doi.org/10.1042/BJ20071051
Article CAS PubMed Google Scholar
Baul U, Vemparala S (2017) Influence of lipid composition of model membranes on methacrylate antimicrobial polymer–membrane interactions. Soft Matter 13:7665–7676. https://doi.org/10.1039/C7SM01211J
Article CAS PubMed Google Scholar
Baul U, Kuroda K, Vemparala S (2014) Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes. J Chem Phys 141(8):084902. https://doi.org/10.1063/1.4893440
Article CAS PubMed Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242
Article CAS PubMed PubMed Central Google Scholar
Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12. https://doi.org/10.1086/595011
Chattopadhyay S, Sinha NK, Banerjee S, Roy D, Chattopadhyay D, Roy S (2006) Small cationic protein from a marine turtle has beta-defensin-like fold and antibacterial and antiviral activity. Proteins Struct Funct Bioinform 64(2):524–531. https://doi.org/10.1002/prot.20963
Cui H, Lyman E, Voth GA (2011) Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys J 100(5):1271–1279
Article CAS PubMed PubMed Central Google Scholar
Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta Biomembr 1462(1–2):11–28
Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins Struct Funct Bioinform 23(4):566–579. https://doi.org/10.1002/prot.340230412
Ganewatta MS, Tang C (2015) Controlling macromolecular structures towards effective antimicrobial polymers. Polymer (Korea) 63:1–29. https://doi.org/10.1016/j.polymer.2015.03.007
Garten M, Prevost C, Cadart C, Gautier R, Bousset L, Melki R, Bassereau P, Vanni S (2015) Methyl-branched lipids promote the membrane adsorption of \(\alpha \)-synuclein by enhancing shallow lipid-packing defects. Phys Chem Chem Phys 17(24):15589–15597
Article CAS PubMed Google Scholar
Gautier R, Bacle A, Tiberti ML, Fuchs PF, Vanni S, Antonny B (2018) PackMem: a versatile tool to compute and visualize interfacial packing defects in lipid bilayers. Biophys J 115(3):436–444. https://doi.org/10.1016/j.bpj.2018.06.025
Article CAS PubMed PubMed Central Google Scholar
Godreuil S, Leban N, Padilla A, Hamel R, Luplertlop N, Chauffour A, Vittecoq M, Hoh F, Thomas F, Sougakoff W, Lionne C, Yssel H, Missé D (2014) Aedesin: structure and antimicrobial activity against multidrug resistant bacterial strains. PLoS ONE 9(8):1–9
Guixà-González R, Rodriguez-Espigares I, Ramírez-Anguita JM, Carrió-Gaspar P, Martinez-Seara H, Giorgino T, Selent J (2014) MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics 30(10):1478–1480. https://doi.org/10.1093/bioinformatics/btu037
Article CAS PubMed Google Scholar
Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37(Suppl 1):963–968
Hancock REW (2000) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 9(8):1723–1729. https://doi.org/10.1517/13543784.9.8.1723
Article CAS PubMed Google Scholar
Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557. https://doi.org/10.1038/nbt1267
Article CAS PubMed Google Scholar
He Y, Lazaridis T (2013) Activity determinants of helical antimicrobial peptides: a large-scale computational study. PLoS ONE 8(6):66440
Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW (2000) Membrane thinning effect of the \(\beta \)-sheet antimicrobial protegrin. Biochemistry 39(1):139–145
Article CAS PubMed Google Scholar
Huan Y, Kong Q, Mou H, Yi H (2020a) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. https://doi.org/10.3389/fmicb.2020.582779
Article PubMed PubMed Central Google Scholar
Huan Y, Kong Q, Mou H, Yi H (2020b) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. https://doi.org/10.3389/fmicb.2020.582779
Article PubMed PubMed Central Google Scholar
Huang HW, Charron NE (2017) Understanding membrane-active antimicrobial peptides. Q Rev Biophys 50:10
Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, Groot BL, Grubmüller H, MacKerell JAD (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14(1):71–73. https://doi.org/10.1038/nmeth.4067
Article CAS PubMed Google Scholar
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Article CAS PubMed Google Scholar
Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. https://doi.org/10.1128/CMR.00056-05
Article CAS PubMed PubMed Central Google Scholar
Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97(1):50–58. https://doi.org/10.1016/j.bpj.2009.04.013
Article CAS PubMed PubMed Central Google Scholar
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935
Kabelka I, Vácha R (2021) Advances in molecular understanding of \(\alpha \)-helical membrane-active peptides. Acc Chem Res 54(9):2196–2204
Article CAS PubMed Google Scholar
Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, Li H, Xu H, Lao X, Zheng H (2019) DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 6(1):148. https://doi.org/10.1038/s41597-019-0154-y
Article CAS PubMed PubMed Central Google Scholar
Klauda JB, Venable RM, Freites JA, O’ Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843
Article CAS PubMed PubMed Central Google Scholar
Koehbach J, Craik DJ (2019) The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci 40(7):517–528
Comments (0)