Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies

Aasen T, Leithe E, Graham SV et al (2019) Connexins in cancer: bridging the gap to the clinic. Oncogene 38(23):4429–4451. https://doi.org/10.1038/s41388-019-0741-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdul Kadir L, Stacey M, Barrett-Jolley R (2018) Emerging roles of the membrane potential: action beyond the action potential. Front Physiol 9:1661. https://doi.org/10.3389/fphys.2018.01661. (Published 2018 Nov 21)

Article  PubMed  PubMed Central  Google Scholar 

Abdulla FA, Smith PA (2002) Changes in Na(+) channel currents of rat dorsal root ganglion neurons following axotomy and axotomy-induced autotomy. J Neurophysiol 88(5):2518–2529. https://doi.org/10.1152/jn.00913.2001

Article  CAS  PubMed  Google Scholar 

Abrahamsen B, Zhao J, Asante CO et al (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321(5889):702–705. https://doi.org/10.1126/science.1156916

Article  CAS  PubMed  Google Scholar 

Ait Ouares K, Filipis L, Tzilivaki A, Poirazi P, Canepari M (2019) Two distinct sets of Ca2+ and K+ channels are activated at different membrane potentials by the climbing fiber synaptic potential in purkinje neuron dendrites. J Neurosci 39(11):1969–1981. https://doi.org/10.1523/JNEUROSCI.2155-18.2018

Article  PubMed  PubMed Central  Google Scholar 

Alberts B, Johnson A, Lewis J, et al. (2022) Molecular biology of the cell, 4th edn. Garland Science, New York. Ion Channels and the Electrical Properties of Membranes. https://www.ncbi.nlm.nih.gov/books/NBK26910/

Altamura C, Gavazzo P, Pusch M, Desaphy JF (2022) Ion channel involvement in tumor drug resistance. J Pers Med 12(2):210. https://doi.org/10.3390/jpm12020210. (Published 2022 Feb 3)

Article  PubMed  PubMed Central  Google Scholar 

Andersson KE (1992) Clinical pharmacology of potassium channel openers. Pharmacol Toxicol 70(4):244–254. https://doi.org/10.1111/j.1600-0773.1992.tb00466.x

Article  CAS  PubMed  Google Scholar 

Angus M, Ruben P (2019) Voltage gated sodium channels in cancer and their potential mechanisms of action. Channels (austin) 13(1):400–409. https://doi.org/10.1080/19336950.2019.1666455

Article  PubMed  Google Scholar 

Annecchino LA, Schultz SR (2018) Progress in automating patch clamp cellular physiology. Brain Neurosci Adv. 2:2398212818776561. https://doi.org/10.1177/2398212818776561. (Published 2018 May 17)

Article  PubMed  PubMed Central  Google Scholar 

Audero MM, Prevarskaya N, Fiorio PA (2022) Ca2+ signalling and hypoxia/acidic tumour microenvironment interplay in tumour progression. Int J Mol Sci 23(13):7377. https://doi.org/10.3390/ijms23137377. (Published 2022 Jul 2)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balasubramanian S, Weston DA, Levin M, Davidian DCC (2024) Electroceuticals: emerging applications beyond the nervous system and excitable tissues. Trends Pharmacol Sci 45(5):391–394. https://doi.org/10.1016/j.tips.2024.03.001

Article  CAS  PubMed  Google Scholar 

Balitsky KP, Shuba EP (1964) Resting potential of malignant tumour cells. Acta Unio Int Contra Cancrum 20:1391–1393

CAS  PubMed  Google Scholar 

Barca I, Ferragina F, Kallaverja E, Arrotta A, Cristofaro MG (2023) Electrochemotherapy as an effective alternative in the treatment of local advanced oral squamous cell carcinoma: a retrospective analysis of treated cases. Int J Environ Res Public Health 20(6):5170. https://doi.org/10.3390/ijerph20065170. (Published 2023 Mar 15)

Article  PubMed  PubMed Central  Google Scholar 

Bartlett DE, Miller RB, Thiesfeldt S, Lakhani HV, Shapiro JI, Sodhi K (2018) The role of Na/K-ATPase signaling in oxidative stress related to aging: implications in obesity and cardiovascular disease. Int J Mol Sci 19(7):2139. https://doi.org/10.3390/ijms19072139. (Published 2018 Jul 23)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bautista W, Lipschitz J, McKay A, Minuk GY (2017) Cancer stem cells are depolarized relative to normal stem cells derived from human livers. Ann Hepatol 16(2):297–303. https://doi.org/10.5604/16652681.1231590

Article  CAS  PubMed  Google Scholar 

Beall PT, Asch BB, Chang DC, Medina D, Hazlewood CF (1980) Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times. J Natl Cancer Inst 64(2):335–338. https://doi.org/10.1093/jnci/64.2.335

Article  CAS  PubMed  Google Scholar 

Beckmann A, Hainz N, Tschernig T, Meier C (2019) Facets of communication: gap junction ultrastructure and function in cancer stem cells and tumor cells. Cancers (basel) 11(3):288. https://doi.org/10.3390/cancers11030288. (Published 2019 Mar 1)

Article  CAS  PubMed  Google Scholar 

Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer 72(12):3694–3700. https://doi.org/10.1002/1097-0142(19931215)72:12%3c3694::aid-cncr2820721222%3e3.0.co;2-2

Article  CAS  PubMed  Google Scholar 

Bennett B, Purdy M, Baker K et al (2016) An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels. Nat Commun 7:8770. https://doi.org/10.1038/ncomms9770

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD (2019) The role of voltage-gated sodium channels in pain signaling. Physiol Rev 99(2):1079–1151. https://doi.org/10.1152/physrev.00052.2017

Article  CAS  PubMed  Google Scholar 

Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586(21):5047–5061. https://doi.org/10.1113/jphysiol.2008.160440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhave G, Neilson EG (2011) Body fluid dynamics: back to the future. J Am Soc Nephrol 22(12):2166–2181. https://doi.org/10.1681/ASN.2011080865

Article  CAS  PubMed  Google Scholar 

Binggeli R, Cameron IL (1980) Cellular potentials of normal and cancerous fibroblasts and hepatocytes. Cancer Res 40(6):1830–1835

CAS  PubMed  Google Scholar 

Binggeli R, Weinstein RC (1985) Deficits in elevating membrane potential of rat fibrosarcoma cells after cell contact. Cancer Res 45(1):235–241

CAS  PubMed  Google Scholar 

Binggeli R, Weinstein RC (1986) Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol 123(4):377–401. https://doi.org/10.1016/s0022-5193(86)80209-0

Article  CAS  PubMed  Google Scholar 

Blackiston D, Adams DS, Lemire JM, Lobikin M, Levin M (2011) Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis Model Mech 4(1):67–85. https://doi.org/10.1242/dmm.005561

Article  CAS  PubMed  Google Scholar 

Blanchard H, Grochulski P, Li Y et al (1997) Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes. Nat Struct Biol 4(7):532–538. https://doi.org/10.1038/nsb0797-532

Article  CAS  PubMed  Google Scholar 

Bonzanni M, Payne SL, Adelfio M, Kaplan DL, Levin M, Oudin MJ (2020) Defined extracellular ionic solutions to study and manipulate the cellular resting membrane potential. Biol Open 9(1):bio048553. https://doi.org/10.1242/bio.048553. (Published 2020 Jan 14)

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif