Aasen T, Leithe E, Graham SV et al (2019) Connexins in cancer: bridging the gap to the clinic. Oncogene 38(23):4429–4451. https://doi.org/10.1038/s41388-019-0741-6
Article CAS PubMed PubMed Central Google Scholar
Abdul Kadir L, Stacey M, Barrett-Jolley R (2018) Emerging roles of the membrane potential: action beyond the action potential. Front Physiol 9:1661. https://doi.org/10.3389/fphys.2018.01661. (Published 2018 Nov 21)
Article PubMed PubMed Central Google Scholar
Abdulla FA, Smith PA (2002) Changes in Na(+) channel currents of rat dorsal root ganglion neurons following axotomy and axotomy-induced autotomy. J Neurophysiol 88(5):2518–2529. https://doi.org/10.1152/jn.00913.2001
Article CAS PubMed Google Scholar
Abrahamsen B, Zhao J, Asante CO et al (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321(5889):702–705. https://doi.org/10.1126/science.1156916
Article CAS PubMed Google Scholar
Ait Ouares K, Filipis L, Tzilivaki A, Poirazi P, Canepari M (2019) Two distinct sets of Ca2+ and K+ channels are activated at different membrane potentials by the climbing fiber synaptic potential in purkinje neuron dendrites. J Neurosci 39(11):1969–1981. https://doi.org/10.1523/JNEUROSCI.2155-18.2018
Article PubMed PubMed Central Google Scholar
Alberts B, Johnson A, Lewis J, et al. (2022) Molecular biology of the cell, 4th edn. Garland Science, New York. Ion Channels and the Electrical Properties of Membranes. https://www.ncbi.nlm.nih.gov/books/NBK26910/
Altamura C, Gavazzo P, Pusch M, Desaphy JF (2022) Ion channel involvement in tumor drug resistance. J Pers Med 12(2):210. https://doi.org/10.3390/jpm12020210. (Published 2022 Feb 3)
Article PubMed PubMed Central Google Scholar
Andersson KE (1992) Clinical pharmacology of potassium channel openers. Pharmacol Toxicol 70(4):244–254. https://doi.org/10.1111/j.1600-0773.1992.tb00466.x
Article CAS PubMed Google Scholar
Angus M, Ruben P (2019) Voltage gated sodium channels in cancer and their potential mechanisms of action. Channels (austin) 13(1):400–409. https://doi.org/10.1080/19336950.2019.1666455
Annecchino LA, Schultz SR (2018) Progress in automating patch clamp cellular physiology. Brain Neurosci Adv. 2:2398212818776561. https://doi.org/10.1177/2398212818776561. (Published 2018 May 17)
Article PubMed PubMed Central Google Scholar
Audero MM, Prevarskaya N, Fiorio PA (2022) Ca2+ signalling and hypoxia/acidic tumour microenvironment interplay in tumour progression. Int J Mol Sci 23(13):7377. https://doi.org/10.3390/ijms23137377. (Published 2022 Jul 2)
Article CAS PubMed PubMed Central Google Scholar
Balasubramanian S, Weston DA, Levin M, Davidian DCC (2024) Electroceuticals: emerging applications beyond the nervous system and excitable tissues. Trends Pharmacol Sci 45(5):391–394. https://doi.org/10.1016/j.tips.2024.03.001
Article CAS PubMed Google Scholar
Balitsky KP, Shuba EP (1964) Resting potential of malignant tumour cells. Acta Unio Int Contra Cancrum 20:1391–1393
Barca I, Ferragina F, Kallaverja E, Arrotta A, Cristofaro MG (2023) Electrochemotherapy as an effective alternative in the treatment of local advanced oral squamous cell carcinoma: a retrospective analysis of treated cases. Int J Environ Res Public Health 20(6):5170. https://doi.org/10.3390/ijerph20065170. (Published 2023 Mar 15)
Article PubMed PubMed Central Google Scholar
Bartlett DE, Miller RB, Thiesfeldt S, Lakhani HV, Shapiro JI, Sodhi K (2018) The role of Na/K-ATPase signaling in oxidative stress related to aging: implications in obesity and cardiovascular disease. Int J Mol Sci 19(7):2139. https://doi.org/10.3390/ijms19072139. (Published 2018 Jul 23)
Article CAS PubMed PubMed Central Google Scholar
Bautista W, Lipschitz J, McKay A, Minuk GY (2017) Cancer stem cells are depolarized relative to normal stem cells derived from human livers. Ann Hepatol 16(2):297–303. https://doi.org/10.5604/16652681.1231590
Article CAS PubMed Google Scholar
Beall PT, Asch BB, Chang DC, Medina D, Hazlewood CF (1980) Distinction of normal, preneoplastic, and neoplastic mouse mammary primary cell cultures by water nuclear magnetic resonance relaxation times. J Natl Cancer Inst 64(2):335–338. https://doi.org/10.1093/jnci/64.2.335
Article CAS PubMed Google Scholar
Beckmann A, Hainz N, Tschernig T, Meier C (2019) Facets of communication: gap junction ultrastructure and function in cancer stem cells and tumor cells. Cancers (basel) 11(3):288. https://doi.org/10.3390/cancers11030288. (Published 2019 Mar 1)
Article CAS PubMed Google Scholar
Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I–II trial. Cancer 72(12):3694–3700. https://doi.org/10.1002/1097-0142(19931215)72:12%3c3694::aid-cncr2820721222%3e3.0.co;2-2
Article CAS PubMed Google Scholar
Bennett B, Purdy M, Baker K et al (2016) An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels. Nat Commun 7:8770. https://doi.org/10.1038/ncomms9770
Article CAS PubMed PubMed Central Google Scholar
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD (2019) The role of voltage-gated sodium channels in pain signaling. Physiol Rev 99(2):1079–1151. https://doi.org/10.1152/physrev.00052.2017
Article CAS PubMed Google Scholar
Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586(21):5047–5061. https://doi.org/10.1113/jphysiol.2008.160440
Article CAS PubMed PubMed Central Google Scholar
Bhave G, Neilson EG (2011) Body fluid dynamics: back to the future. J Am Soc Nephrol 22(12):2166–2181. https://doi.org/10.1681/ASN.2011080865
Article CAS PubMed Google Scholar
Binggeli R, Cameron IL (1980) Cellular potentials of normal and cancerous fibroblasts and hepatocytes. Cancer Res 40(6):1830–1835
Binggeli R, Weinstein RC (1985) Deficits in elevating membrane potential of rat fibrosarcoma cells after cell contact. Cancer Res 45(1):235–241
Binggeli R, Weinstein RC (1986) Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol 123(4):377–401. https://doi.org/10.1016/s0022-5193(86)80209-0
Article CAS PubMed Google Scholar
Blackiston D, Adams DS, Lemire JM, Lobikin M, Levin M (2011) Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis Model Mech 4(1):67–85. https://doi.org/10.1242/dmm.005561
Article CAS PubMed Google Scholar
Blanchard H, Grochulski P, Li Y et al (1997) Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes. Nat Struct Biol 4(7):532–538. https://doi.org/10.1038/nsb0797-532
Article CAS PubMed Google Scholar
Bonzanni M, Payne SL, Adelfio M, Kaplan DL, Levin M, Oudin MJ (2020) Defined extracellular ionic solutions to study and manipulate the cellular resting membrane potential. Biol Open 9(1):bio048553. https://doi.org/10.1242/bio.048553. (Published 2020 Jan 14)
Comments (0)