Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001
Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97(7):3684–3689. https://doi.org/10.1073/pnas.060590697
Article CAS PubMed PubMed Central Google Scholar
Avlani VA, Gregory KJ, Morton CJ, Parker MW, Sexton PM, Christopoulos A (2007) Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G Protein-coupled receptor ligands*. J Biol Chem 282(35):25677–25686. https://doi.org/10.1074/jbc.M702311200
Article CAS PubMed Google Scholar
Bang I, Choi HJ (2015) Structural features of β2 adrenergic receptor: crystal structures and beyond. Mol Cells 38(2):105–111. https://doi.org/10.14348/molcells.2015.2301
Article CAS PubMed Google Scholar
Barreto CAV, Baptista SJ, Preto AJ, Matos-Filipe P, Mourão J, Melo R, Moreira I (2020) Prediction and targeting of GPCR oligomer interfaces. Prog Mol Biol Transl Sci 169:105–149. https://doi.org/10.1016/bs.pmbts.2019.11.007
Berger WE, Nadel JA (2008) Efficacy and safety of formoterol for the treatment of chronic obstructive pulmonary disease. Respir Med 102(2):173–188. https://doi.org/10.1016/j.rmed.2007.09.011
Article CAS PubMed Google Scholar
Borroto-Escuela DO, Rodriguez D, Romero-Fernandez W, Kapla J, Jaiteh M, Ranganathan A, Lazarova T, Fuxe K, Carlsson J (2018) Mapping the interface of a GPCR dimer: a structural model of the A(2A) ADENOSINE and D(2) dopamine receptor heteromer. Front Pharmacol 9:829. https://doi.org/10.3389/fphar.2018.00829
Article CAS PubMed PubMed Central Google Scholar
Bueschbell B, Magalhães PR, Barreto CAV, Melo R, Schiedel AC, Machuqueiro M, Moreira IS (2023) The world of GPCR dimers—mapping dopamine receptor D(2) homodimers in different activation states and configuration arrangements. Comput Struct Biotechnol J 21:4336–4353. https://doi.org/10.1016/j.csbj.2023.08.032
Article CAS PubMed PubMed Central Google Scholar
Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zürn A, Lohse MJ (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA 110(2):743–748. https://doi.org/10.1073/pnas.1205798110
Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham III TE, Cruzeiro VWD, Darden TA, Duke RE, Giambasu G, Gilson MK, Gohlke H, Goetz AW, Harris R, Izadi S, Izmailov SA, Jin C, Kasavajhala K, Kaymak MC, King E, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Machado M, Man V, Manathunga M, Merz KM, Miao Y, Mikhailovskii O et al (2021) Amber 2021
Chen Y, Fleetwood O, Pérez-Conesa S, Delemotte L (2021) Allosteric effect of nanobody binding on ligand-specific active states of the β2 adrenergic receptor. J Chem Inf Model 61(12):6024–6037. https://doi.org/10.1021/acs.jcim.1c00826
Article CAS PubMed PubMed Central Google Scholar
Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J et al (2007) High-resolution crystal structure of an engineered human Beta2-adrenergic G protein-coupled receptor. Science 318:1258
Article CAS PubMed PubMed Central Google Scholar
Di Marino D, Conflitti P, Motta S, Limongelli V (2023) Structural basis of dimerization of chemokine receptors CCR5 and CXCR4. Nat Commun 14(1):6439. https://doi.org/10.1038/s41467-023-42082-z
Article CAS PubMed PubMed Central Google Scholar
Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737. https://doi.org/10.1021/ja026939x
Article CAS PubMed Google Scholar
Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Huafeng Xu, Borhani DW, Shaw DE (2011) Activation mechanism of the β2-adrenergic receptor. Proc Natl Acad Sci USA 108(46):18684–18689. https://doi.org/10.1073/pnas.1110499108
Article CAS PubMed PubMed Central Google Scholar
Elez K, Bonvin AMJJ, Vangone A (2018) Distinguishing crystallographic from biological interfaces in protein complexes: role of intermolecular contacts and energetics for classification. BMC Bioinform 19(15):438. https://doi.org/10.1186/s12859-018-2414-9
Faron-Górecka A, Szlachta M, Kolasa M, Solich J, Górecki A, Kuśmider M, Żurawek D, Dziedzicka-Wasylewska M (2019) Understanding GPCR dimerization. Methods Cell Biol 149:155–178. https://doi.org/10.1016/bs.mcb.2018.08.005
Article CAS PubMed Google Scholar
Farran B (2017) An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res. https://doi.org/10.1016/j.phrs.2017.01.008
Fleetwood O, Matricon P, Carlsson J, Delemotte L (2020) Energy landscapes reveal agonist control of G protein-coupled receptor activation via microswitches. Biochemistry 59(7):880–891. https://doi.org/10.1021/acs.biochem.9b00842
Article CAS PubMed Google Scholar
Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic Analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272. https://doi.org/10.1124/mol.63.6.1256
Article CAS PubMed Google Scholar
Gahbauer S, Böckmann RA (2016) Membrane-mediated oligomerization of G protein coupled receptors and its implications for GPCR function. Front Physiol 7:494. https://doi.org/10.3389/fphys.2016.00494
Article PubMed PubMed Central Google Scholar
García-Nafría J, Tate CG (2019) Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol Cell Endocrinol 488:1–13. https://doi.org/10.1016/j.mce.2019.02.006
Article CAS PubMed Google Scholar
Ghosh A, Sonavane U, Joshi R (2014) Multiscale modelling to understand the self-assembly mechanism of human β2-adrenergic receptor in lipid bilayer. Comput Biol Chem 48:29–39. https://doi.org/10.1016/j.compbiolchem.2013.11.002
Article CAS PubMed Google Scholar
Gregorio GG, Masureel M, Hilger D, Terry DS, Juette M, Zhao H, Zhou Z et al (2017) Single-molecule analysis of ligand efficacy in β2AR-G-protein activation. Nature 547(7661):68–73. https://doi.org/10.1038/nature22354
Article CAS PubMed PubMed Central Google Scholar
Han Y, Dawson JRD, DeMarco KR, Rouen KC, Bekker S, Yarov-Yarovoy V, Clancy CE, Xiang YK, Vorobyov I (2023) Elucidation of a dynamic interplay between a Beta-2 adrenergic receptor, its agonist, and stimulatory G protein. Proc Natl Acad Sci 120(10):e2215916120. https://doi.org/10.1073/pnas.2215916120
Article CAS PubMed PubMed Central Google Scholar
Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EYT, Velasquez J, Kuhn P, Stevens RC (2008) A Specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16(6):897–905. https://doi.org/10.1016/j.str.2008.05.001
Article CAS PubMed PubMed Central Google Scholar
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16(12):829–842. https://doi.org/10.1038/nrd.2017.178
Article CAS PubMed PubMed Central Google Scholar
Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Madan Babu M (2018) Pharmacogenomics of GPCR drug targets. Cell 172(1–2):41-54.e19. https://doi.org/10.1016/j.cell.2017.11.033
Comments (0)