The role of GDF15 in attenuating noise-induced hidden hearing loss by alleviating oxidative stress

Aedo C, Aguilar E. Cochlear synaptopathy: new findings in animal and human research. Rev Neurosci. 2020;31(6):605–15. https://doi.org/10.1515/revneuro-2020-0002.

Article  PubMed  Google Scholar 

Assadi A, Zahabi A, Hart RA. Gdf15, an update of the physiological and pathological roles it plays: a review. Pflugers Archiv-European Journal of Physiology. 2020;472(11):1535–46. https://doi.org/10.1007/s00424-020-02459-1.

Article  PubMed  CAS  Google Scholar 

Bajin MD, Dahm V, Lin V. Hidden hearing loss: current concepts. Curr Opin Otolaryngol Head Neck Surg. 2022;30(5):321–5. https://doi.org/10.1097/MOO.0000000000000824.

Article  PubMed  Google Scholar 

Bakay W, Anderson LA, Garcia-Lazaro JA, Mcalpine D, Schaette R. Hidden hearing loss selectively impairs neural adaptation to loud sound environments. Nat Commun. 2018;9(1):4298. https://doi.org/10.1038/s41467-018-06777-y.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brosius LA, Lucas TA, Carson GA, Caneda C, Zhou L, Barres BA, Buckwalter MS, Sloan SA. An rna-sequencing transcriptome of the rodent schwann cell response to peripheral nerve injury. J Neuroinflammation. 2022;19(1):105. https://doi.org/10.1186/s12974-022-02462-6.

Article  CAS  Google Scholar 

Budak M, Grosh K, Sasmal A, Corfas G, Zochowski M, Booth V. Contrasting mechanisms for hidden hearing loss: synaptopathy vs myelin defects. PLoS Comput Biol. 2021;17(1):e1008499. https://doi.org/10.1371/journal.pcbi.1008499.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen XM, Ji SF, Liu YH, Xue XM, Xu J, Gu ZH, Deng SL, Liu CD, Wang H, Chang YM, Wang XC. Ginsenoside rd ameliorates auditory cortex injury associated with military aviation noise-induced hearing loss by activating sirt1/pgc-1alpha signaling pathway. Front Physiol. 2020;11:788. https://doi.org/10.3389/fphys.2020.00788.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen J, Gao D, Chen J, Hou S, He B, Li Y, Li S, Zhang F, Sun X, Jin Y, Sun L, Yang J. Pseudo-temporal analysis of single-cell rna sequencing reveals trans-differentiation potential of greater epithelial ridge cells into hair cells during postnatal development of cochlea in rats. Front Mol Neurosci. 2022;15:832813. https://doi.org/10.3389/fnmol.2022.832813.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Colla MF, Lunardelo PP, Dias F. Cochlear synaptopathy and hidden hearing loss: a scoping review. Codas. 2023;36(2):e20230032. https://doi.org/10.1590/2317-1782/20232023032pt.

Article  PubMed  PubMed Central  Google Scholar 

Cunningham CL, Muller U. 2019. Molecular structure of the hair cell mechanoelectrical transduction complex. Cold Spring Harbor Perspectives in Medicine 9(5). https://doi.org/10.1101/cshperspect.a033167.

Driver EC, Kelley MW. 2020. Development of the cochlea. Development 147(12). https://doi.org/10.1242/dev.162263.

Fan B, Lu F, Du WJ, Chen J, An XG, Wang RF, Li W, Song YL, Zha DJ, Chen FQ. Pten inhibitor bisperoxovanadium protects against noise-induced hearing loss. Neural Regen Res. 2023;18(7):1601–6. https://doi.org/10.4103/1673-5374.358606.

Article  PubMed  CAS  Google Scholar 

Fernandez KA, Watabe T, Tong M, Meng X, Tani K, Kujawa SG, Edge AS. 2021. Trk agonist drugs rescue noise-induced hidden hearing loss. Jci Insight 6(3). https://doi.org/10.1172/jci.insight.142572.

Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: oxidative stress and ros signaling. Free Radical Biol Med. 2019;135:46–59. https://doi.org/10.1016/j.freeradbiomed.2019.02.022.

Article  CAS  Google Scholar 

Fettiplace R. Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. Compr Physiol. 2017;7(4):1197–227. https://doi.org/10.1002/cphy.c160049.

Article  PubMed  PubMed Central  Google Scholar 

Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discovery. 2021;20(9):689–709. https://doi.org/10.1038/s41573-021-00233-1.

Article  PubMed  CAS  Google Scholar 

Galuppo B, Agazzi C, Pierpont B, Chick J, Li Z, Caprio S, Santoro N. Growth differentiation factor 15 (gdf15) is associated with non-alcoholic fatty liver disease (nafld) in youth with overweight or obesity. Nutr Diabetes. 2022;12(1):9. https://doi.org/10.1038/s41387-022-00187-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goutman JD, Elgoyhen AB, Gomez-Casati ME. Cochlear hair cells: the sound-sensing machines. FEBS Lett. 2015;589(22):3354–61. https://doi.org/10.1016/j.febslet.2015.08.030.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gratias P, Nasr J, Affortit C, Ceccato JC, Francois F, Casas F, Pujol R, Pucheu S, Puel JL, Wang J. 2021. Impulse noise induced hidden hearing loss, hair cell ciliary changes and oxidative stress in mice. Antioxidants 10(12). https://doi.org/10.3390/antiox10121880.

Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A, Alkhanani MF, Harakeh S, Hussain A, Haque S, Reshi MS. 2022. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells 11(3). https://doi.org/10.3390/cells11030552.

Hough K, Verschuur CA, Cunningham C, Newman TA. Macrophages in the cochlea; An immunological link between risk factors and progressive hearing loss. Glia. 2022;70(2):219–38. https://doi.org/10.1002/glia.24095.

Article  PubMed  CAS  Google Scholar 

Huang H, Chen Z, Li Y, Gong K, Xiao L, Fu H, Yang J, Wang X, Meng Q. Gdf-15 suppresses atherosclerosis by inhibiting oxldl-induced lipid accumulation and inflammation in macrophages. Evid Based Complement Alternat Med. 2021;2021:6497568. https://doi.org/10.1155/2021/6497568.

Article  PubMed  PubMed Central  Google Scholar 

Huang L. 2020. [Hidden hearing loss and early identification]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 34(7): 668–671. https://doi.org/10.13201/j.issn.2096-7993.2020.07.023.

Ji L, Lee HJ, Wan G, Wang GP, Zhang L, Sajjakulnukit P, Schacht J, Lyssiotis CA, Corfas G. Auditory metabolomics, an approach to identify acute molecular effects of noise trauma. Sci Rep. 2019;9(1):9273. https://doi.org/10.1038/s41598-019-45385-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Johann K, Kleinert M, Klaus S. 2021. The role of gdf15 as a myomitokine. Cells 10(11). https://doi.org/10.3390/cells10112990.

Kalinec GM, Lomberk G, Urrutia RA, Kalinec F. Resolution of cochlear inflammation: novel target for preventing or ameliorating drug-, noise- and age-related hearing loss. Front Cell Neurosci. 2017;11:192. https://doi.org/10.3389/fncel.2017.00192.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kalucka J, de Rooij L, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K, Garcia-Caballero M, Khan S, Geldhof V, Sokol L, Chen R, Treps L, Borri M, de Zeeuw P, Dubois C, Karakach TK, Falkenberg KD, Parys M, Yin X, Vinckier S, Du Y, Fenton RA, Schoonjans L, Dewerchin M, Eelen G, Thienpont B, Lin L, Bolund L, Li X, Luo Y, Carmeliet P. Single-cell transcriptome atlas of murine endothelial cells. Cell. 2020;180(4):764–79. https://doi.org/10.1016/j.cell.2020.01.015.

Article  PubMed  CAS  Google Scholar 

Kobayashi S, Yamazaki H, Imamura T, Fujioka H, Kakeshita K, Koike T, Kinugawa K. Implication of serum growth differentiation factor-15 level in patients with renal diseases. Int Urol Nephrol. 2023;55(11):2935–41. https://doi.org/10.1007/s11255-023-03580-7.

Article  PubMed  CAS  Google Scholar 

Li S, Ma YM, Zheng PS, Zhang P. Gdf15 promotes the proliferation of cervical cancer cells by phosphorylating akt1 and erk1/2 through the receptor erbb2. J Exp Clin Cancer Res. 2018;37(1):80. https://doi.org/10.1186/s13046-018-0744-0.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE, Marschallinger J, Yu G, Quake SR, Wyss-Coray T, Barres BA. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell rna sequencing. Neuron. 2019;101(2):207–23. https://doi.org/10.1016/j.neuron.2018.12.006.

Article  PubMed  CAS  Google Scholar 

Li H, Jiang X, Xiao Y, Zhang Y, Zhang W, Doherty M, Nestor J, Li C, Ye J, Sha T, Lyu H, Wei J, Zeng C, Lei G. Combining single-cell rna sequencing and population-based studies reveals hand osteoarthritis-associated chondrocyte subpopulations and pathways. Bone Res. 2023a;11(1):58. https://doi.org/10.1038/s41413-023-00292-7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Comments (0)

No login
gif