Longtin R (2004) Birthday of a breakthrough: fibronectin research proves important, but not as originally expected. J Natl Cancer Inst 96(1):6–8
Goudemand M (1983) Plasma fibronectin. Rev Fr Transfus Immunohematol 26(3):279–298
Article CAS PubMed Google Scholar
Maurer LM, Ma W, Mosher DF (2015) Dynamic structure of plasma fibronectin. Crit Rev Biochem Mol Biol 51(4):213–227. https://doi.org/10.1080/10409238.2016.1184224
Article CAS PubMed Google Scholar
Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13(10):3546–3559
Article CAS PubMed PubMed Central Google Scholar
Sottile J, Hocking DC, Langenbach KJ (2000) Fibronectin polymerization stimulates cell growth by RGD-dependent and -independent mechanisms. J Cell Sci 113 Pt 23:4287–4299
Prowse KR, Tricoli JV, Klebe RJ, Shows TB (1986) Assignment of the human fibronectin structural gene to chromosome 2. Cytogenet Cell Genet 41(1):42–46
Article CAS PubMed Google Scholar
Dinesh NEH, Campeau PM, Reinhardt DP (2022) Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 323(2):536–549. https://doi.org/10.1152/ajpcell.00226.2022
Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S (2015) Fibronectin signals through integrin alpha5beta1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol 407(2):195–210. https://doi.org/10.1016/j.ydbio.2015.09.016
Article CAS PubMed PubMed Central Google Scholar
White ES, Muro AF (2011) Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life 63(7):538–546. https://doi.org/10.1002/iub.493
Article CAS PubMed Google Scholar
Lin TC, Yang CH, Cheng LH, Chang WT, Lin YR, Cheng HC (2019) Fibronectin in cancer: friend or foe. Cells 9(1). https://doi.org/10.3390/cells9010027
Astrof S, Crowley D, Hynes RO (2007) Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev Biol 311(1):11–24
Article CAS PubMed PubMed Central Google Scholar
Dalton CJ, Lemmon CA (2021) Fibronectin: molecular structure, fibrillar structure and mechanochemical signaling. Cells 10(9). https://doi.org/10.3390/cells10092443
George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119(4):1079–1091
Article CAS PubMed Google Scholar
Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fässler R (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178(1):167–178
Article CAS PubMed PubMed Central Google Scholar
Castelletti F, Donadelli R, Banterla F, Hildebrandt F, Zipfel PF, Bresin E, Otto E, Skerka C, Renieri A, Todeschini M, Caprioli J, Caruso RM, Artuso R, Remuzzi G, Noris M (2008) Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci USA 105(7):2538–2543. https://doi.org/10.1073/pnas.0707730105
Article PubMed PubMed Central Google Scholar
Lee CS, Fu H, Baratang N, Rousseau J, Kumra H, Sutton VR, Niceta M, Ciolfi A, Yamamoto G, Bertola D, Marcelis CL, Lugtenberg D, Bartuli A, Kim C, Hoover-Fong J, Sobreira N, Pauli R, Bacino C, Krakow D, Parboosingh J, Yap P, Kariminejad A, McDonald MT, Aracena MI, Lausch E, Unger S, Superti-Furga A, Lu JT, Baylor-Hopkins Center for Mendelian Genomics, Cohn DH, Tartaglia M, Lee BH, Reinhardt DP, Campeau PM (2017) Mutations in fibronectin cause a subtype of spondylometaphyseal dysplasia with corner fractures. Am J Hum Genet 101 (5):815–823. https://doi.org/10.1016/j.ajhg.2017.09.019
Costantini A, Valta H, Baratang NV, Yap P, Bertola DR, Yamamoto GL, Kim CA, Chen J, Wierenga KJ, Fanning EA, Escobar L, McWalter K, McLaughlin H, Willaert R, Begtrup A, Alm JJ, Reinhardt DP, Makitie O, Campeau PM (2019) Novel fibronectin mutations and expansion of the phenotype in spondylometaphyseal dysplasia with corner fractures. Bone 121:163–171. https://doi.org/10.1016/j.bone.2018.12.020
Article CAS PubMed Google Scholar
Cadoff EB, Sheffer R, Wientroub S, Ovadia D, Meiner V, Schwarzbauer JE (2018) Mechanistic insights into the cellular effects of a novel FN1 variant associated with a spondylometaphyseal dysplasia. Clin Genet 94(5):429–437. https://doi.org/10.1111/cge.13424
Article CAS PubMed PubMed Central Google Scholar
Newman B, Wallis GA (2003) Skeletal dysplasias caused by a disruption of skeletal patterning and endochondral ossification. Clin Genet 63(4):241–251
Article CAS PubMed Google Scholar
Tsang KY, Tsang SW, Chan D, Cheah KS (2014) The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Res 102(1):52–73. https://doi.org/10.1002/bdrc.21060
Kulyk WM, Upholt WB, Kosher RA (1989) Fibronectin gene expression during limb cartilage differentiation. Development 106(3):449–455
Article CAS PubMed Google Scholar
Singh P, Schwarzbauer JE (2014) Fibronectin matrix assembly is essential for cell condensation during chondrogenesis. J Cell Sci 127(Pt 20):4420–4428. https://doi.org/10.1242/jcs.150276
Article CAS PubMed PubMed Central Google Scholar
Rein S, Esplugas M, Garcia-Elias M, Magin TM, Randau TM, Siemers F, Philipps HM (2020) Immunofluorescence analysis of sensory nerve endings in the interosseous membrane of the forearm. J Anat 236(5):906–915. https://doi.org/10.1111/joa.13138
Article CAS PubMed Google Scholar
Nag R, Paul RR, Pal M, Chatterjee J, Das RK (2020) Epithelial distribution of E-cadherin, p63, and mitotic figures in ApoTome images to determine the oncogenic potentiality of oral submucous fibrosis. Microsc Microanal 26(6):1198–1210. https://doi.org/10.1017/S1431927620024538
Article CAS PubMed Google Scholar
Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71(5):289–297
Haas IG (1994) BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 50(11–12):1012–1020
Article CAS PubMed Google Scholar
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E (2021) Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 6(1):323. https://doi.org/10.1038/s41392-021-00728-8
Article CAS PubMed PubMed Central Google Scholar
Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70(5):715–728
Article CAS PubMed Google Scholar
Vanlandingham PA, Ceresa BP (2009) Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J Biol Chem 284(18):12110–12124. https://doi.org/10.1074/jbc.M809277200
Article CAS PubMed PubMed Central Google Scholar
Peng J, Zhang R, Cui Y, Liu H, Zhao X, Huang L, Hu M, Yuan X, Ma B, Ma X, Takashi U, Masaaki K, Liang X, Yu L (2014) Atg5 regulates late endosome and lysosome biogenesis. Sci China Life Sci 57(1):59–68. https://doi.org/10.1007/s11427-013-4588-8
Article CAS PubMed Google Scholar
Liang T, Li P, Liang A, Zhu Y, Qiu X, Qiu J, Peng Y, Huang D, Gao W, Gao B (2022) Identifying the key genes regulating mesenchymal stem cells chondrogenic differentiation: an in vitro study. BMC Musculoskelet Disord 23(1):985. https://doi.org/10.1186/s12891-022-05958-7
Comments (0)