Mutations in fibronectin dysregulate chondrogenesis in skeletal dysplasia

Longtin R (2004) Birthday of a breakthrough: fibronectin research proves important, but not as originally expected. J Natl Cancer Inst 96(1):6–8

Article  PubMed  Google Scholar 

Goudemand M (1983) Plasma fibronectin. Rev Fr Transfus Immunohematol 26(3):279–298

Article  CAS  PubMed  Google Scholar 

Maurer LM, Ma W, Mosher DF (2015) Dynamic structure of plasma fibronectin. Crit Rev Biochem Mol Biol 51(4):213–227. https://doi.org/10.1080/10409238.2016.1184224

Article  CAS  PubMed  Google Scholar 

Sottile J, Hocking DC (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13(10):3546–3559

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sottile J, Hocking DC, Langenbach KJ (2000) Fibronectin polymerization stimulates cell growth by RGD-dependent and -independent mechanisms. J Cell Sci 113 Pt 23:4287–4299

Article  Google Scholar 

Prowse KR, Tricoli JV, Klebe RJ, Shows TB (1986) Assignment of the human fibronectin structural gene to chromosome 2. Cytogenet Cell Genet 41(1):42–46

Article  CAS  PubMed  Google Scholar 

Dinesh NEH, Campeau PM, Reinhardt DP (2022) Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 323(2):536–549. https://doi.org/10.1152/ajpcell.00226.2022

Article  CAS  Google Scholar 

Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S (2015) Fibronectin signals through integrin alpha5beta1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol 407(2):195–210. https://doi.org/10.1016/j.ydbio.2015.09.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

White ES, Muro AF (2011) Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life 63(7):538–546. https://doi.org/10.1002/iub.493

Article  CAS  PubMed  Google Scholar 

Lin TC, Yang CH, Cheng LH, Chang WT, Lin YR, Cheng HC (2019) Fibronectin in cancer: friend or foe. Cells 9(1). https://doi.org/10.3390/cells9010027

Astrof S, Crowley D, Hynes RO (2007) Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Dev Biol 311(1):11–24

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalton CJ, Lemmon CA (2021) Fibronectin: molecular structure, fibrillar structure and mechanochemical signaling. Cells 10(9). https://doi.org/10.3390/cells10092443

George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119(4):1079–1091

Article  CAS  PubMed  Google Scholar 

Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fässler R (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178(1):167–178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castelletti F, Donadelli R, Banterla F, Hildebrandt F, Zipfel PF, Bresin E, Otto E, Skerka C, Renieri A, Todeschini M, Caprioli J, Caruso RM, Artuso R, Remuzzi G, Noris M (2008) Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci USA 105(7):2538–2543. https://doi.org/10.1073/pnas.0707730105

Article  PubMed  PubMed Central  Google Scholar 

Lee CS, Fu H, Baratang N, Rousseau J, Kumra H, Sutton VR, Niceta M, Ciolfi A, Yamamoto G, Bertola D, Marcelis CL, Lugtenberg D, Bartuli A, Kim C, Hoover-Fong J, Sobreira N, Pauli R, Bacino C, Krakow D, Parboosingh J, Yap P, Kariminejad A, McDonald MT, Aracena MI, Lausch E, Unger S, Superti-Furga A, Lu JT, Baylor-Hopkins Center for Mendelian Genomics, Cohn DH, Tartaglia M, Lee BH, Reinhardt DP, Campeau PM (2017) Mutations in fibronectin cause a subtype of spondylometaphyseal dysplasia with corner fractures. Am J Hum Genet 101 (5):815–823. https://doi.org/10.1016/j.ajhg.2017.09.019

Costantini A, Valta H, Baratang NV, Yap P, Bertola DR, Yamamoto GL, Kim CA, Chen J, Wierenga KJ, Fanning EA, Escobar L, McWalter K, McLaughlin H, Willaert R, Begtrup A, Alm JJ, Reinhardt DP, Makitie O, Campeau PM (2019) Novel fibronectin mutations and expansion of the phenotype in spondylometaphyseal dysplasia with corner fractures. Bone 121:163–171. https://doi.org/10.1016/j.bone.2018.12.020

Article  CAS  PubMed  Google Scholar 

Cadoff EB, Sheffer R, Wientroub S, Ovadia D, Meiner V, Schwarzbauer JE (2018) Mechanistic insights into the cellular effects of a novel FN1 variant associated with a spondylometaphyseal dysplasia. Clin Genet 94(5):429–437. https://doi.org/10.1111/cge.13424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman B, Wallis GA (2003) Skeletal dysplasias caused by a disruption of skeletal patterning and endochondral ossification. Clin Genet 63(4):241–251

Article  CAS  PubMed  Google Scholar 

Tsang KY, Tsang SW, Chan D, Cheah KS (2014) The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Res 102(1):52–73. https://doi.org/10.1002/bdrc.21060

Article  CAS  Google Scholar 

Kulyk WM, Upholt WB, Kosher RA (1989) Fibronectin gene expression during limb cartilage differentiation. Development 106(3):449–455

Article  CAS  PubMed  Google Scholar 

Singh P, Schwarzbauer JE (2014) Fibronectin matrix assembly is essential for cell condensation during chondrogenesis. J Cell Sci 127(Pt 20):4420–4428. https://doi.org/10.1242/jcs.150276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rein S, Esplugas M, Garcia-Elias M, Magin TM, Randau TM, Siemers F, Philipps HM (2020) Immunofluorescence analysis of sensory nerve endings in the interosseous membrane of the forearm. J Anat 236(5):906–915. https://doi.org/10.1111/joa.13138

Article  CAS  PubMed  Google Scholar 

Nag R, Paul RR, Pal M, Chatterjee J, Das RK (2020) Epithelial distribution of E-cadherin, p63, and mitotic figures in ApoTome images to determine the oncogenic potentiality of oral submucous fibrosis. Microsc Microanal 26(6):1198–1210. https://doi.org/10.1017/S1431927620024538

Article  CAS  PubMed  Google Scholar 

Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71(5):289–297

PubMed  Google Scholar 

Haas IG (1994) BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 50(11–12):1012–1020

Article  CAS  PubMed  Google Scholar 

Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E (2021) Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 6(1):323. https://doi.org/10.1038/s41392-021-00728-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70(5):715–728

Article  CAS  PubMed  Google Scholar 

Vanlandingham PA, Ceresa BP (2009) Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J Biol Chem 284(18):12110–12124. https://doi.org/10.1074/jbc.M809277200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng J, Zhang R, Cui Y, Liu H, Zhao X, Huang L, Hu M, Yuan X, Ma B, Ma X, Takashi U, Masaaki K, Liang X, Yu L (2014) Atg5 regulates late endosome and lysosome biogenesis. Sci China Life Sci 57(1):59–68. https://doi.org/10.1007/s11427-013-4588-8

Article  CAS  PubMed  Google Scholar 

Liang T, Li P, Liang A, Zhu Y, Qiu X, Qiu J, Peng Y, Huang D, Gao W, Gao B (2022) Identifying the key genes regulating mesenchymal stem cells chondrogenic differentiation: an in vitro study. BMC Musculoskelet Disord 23(1):985. https://doi.org/10.1186/s12891-022-05958-7

Article  CAS  PubMed 

Comments (0)

No login
gif