Hole N, Stern PL. Isolation and characterization of 5T4, a tumour-associated antigen. Int J Cancer. 1990;45:179–84. https://doi.org/10.1002/ijc.2910450132.
Article CAS PubMed Google Scholar
Starzynska T, Rahi V, Stern PL. The expression of 5t4 antigen in colorectal and gastric carcinoma. Br J Cancer. 1992;66:867–9. https://doi.org/10.1038/bjc.1992.375.
Article CAS PubMed PubMed Central Google Scholar
Mieke W, Mulder C, Stern PL, Stukart MJ, De Windt E, Butzelaar RMJM, et al. Low intercellular adhesion molecule 1 and high 5T4 expression on tumor cells correlate with reduced disease-free survival in colorectal carcinoma patients. Clin Cancer Res. 1997;3:1923–30. https://pubmed.ncbi.nlm.nih.gov/9815581/.
Southgate TD, McGinn OJ, Castro FV, Rutkowski AJ, Al-Muftah M, Marinov G, et al. CXCR4 mediated chemotaxis is regulated by 5T4 oncofetal glycoprotein in mouse embryonic cells. PLoS ONE. 2010;5. https://doi.org/10.1371/journal.pone.0009982.
Stern PL, Harrop R. 5T4 oncofoetal antigen: an attractive target for immune intervention in cancer. Cancer Immunol Immunother Springer Sci Bus Media Deutschland GmbH. 2017;415–26. https://doi.org/10.1007/s00262-016-1917-3.
Groothuis P, Jacobs D, Berentsen K, van der Vleuten M, Coumans R, Elgersma R, et al. Abstract 925: introduction to the preclinical profile of SYD1875, a novel site-specifically conjugated duocarmycin-based 5T4-targeting antibody-drug conjugate. Cancer Res. 2021;81:925–925. https://doi.org/10.1158/1538-7445.AM2021-925.
Smith RA, Zammit DJ, Damle NK, Usansky H, Reddy SP, Lin J-H, et al. ASN004, a 5T4-targeting scFv-Fc antibody–drug Conjugate with High Drug-to-antibody ratio, induces complete and durable tumor regressions in preclinical models. Mol Cancer Ther. 2021;20:1327–37. https://doi.org/10.1158/1535-7163.mct-20-0565.
Article CAS PubMed Google Scholar
Zweit J, Shaw D, Stern P, Hastings D, Gillies J, Julyan P, et al. Iodine-124 positron emission tomography imaging of tumor targeted superantigen therapy in renal cell carcinoma patients. J Nucl Med. 2006;47:458P. http://jnm.snmjournals.org/content/47/suppl_1/458P.3.abstract.
Li Q, White JB, Peterson NC, Rickert KW, Lloyd CO, Allen KL, et al. Tumor uptake of pegylated diabodies: balancing systemic clearance and vascular transport. J Control Release. 2018;279:126–35. https://doi.org/10.1016/j.jconrel.2018.04.013.
Article CAS PubMed Google Scholar
Yang E, Liu Q, Huang G, Liu J, Wei W. Engineering nanobodies for next-generation molecular imaging. Drug Discov Today. 2022;27:1622–38. https://doi.org/10.1016/j.drudis.2022.03.013.
Article CAS PubMed Google Scholar
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, et al. The future of Cancer diagnosis, treatment and surveillance: a systemic review on Immunotherapy and Immuno-PET Radiotracers. Molecules. 2021;26:2201. https://doi.org/10.3390/molecules26082201.
Article CAS PubMed PubMed Central Google Scholar
Fayn S, King AP, Gutsche NT, Duan Z, Buffington J, Olkowski CP, et al. Site-specifically conjugated single-domain antibody successfully identifies glypican-3-Expressing Liver Cancer by Immuno-PET. J Nucl Med. 2023;64:1017–23. https://doi.org/10.2967/jnumed.122.265171.
Article CAS PubMed PubMed Central Google Scholar
You Z, Zhou W, Weng J, Feng H, Liang P, Li Y, et al. Application of HER2 peptide vaccines in patients with breast cancer: a systematic review and meta-analysis. Cancer Cell Int BioMed Cent Ltd. 2021. https://doi.org/10.1186/s12935-021-02187-1.
Li L, Lin X, Wang L, Ma X, Zeng Z, Liu F, et al. Immuno-PET of colorectal cancer with a CEA-targeted [68Ga]Ga-nanobody: from bench to bedside. Eur J Nucl Med Mol Imaging. 2023;50:3735–49. https://doi.org/10.1007/s00259-023-06313-1.
Article CAS PubMed Google Scholar
Xavier C, Vaneycken I, D’Huyvetter M, Heemskerk J, Keyaerts M, Vincke C, et al. Synthesis, preclinical validation, dosimetry, and toxicity of a-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776–84. https://doi.org/10.2967/jnumed.112.111021.
Article CAS PubMed Google Scholar
Xu C, Zhu M, Wang Q, Cui J, Huang Y, Huang X, et al. TROP2-directed nanobody-drug conjugate elicited potent antitumor effect in pancreatic cancer. J Nanobiotechnol. 2023;21. https://doi.org/10.1186/s12951-023-02183-9.
Wållberg H, Orlova A. Slow internalization of anti-HER2 synthetic affibody monomer 111In-DOTA-ZHER2:342-pep2: implications for development of labeled tracers. Cancer Biother Radiopharm. 2008;23:435–42. https://doi.org/10.1089/cbr.2008.0464.
Feng Y, Sarrett SM, Meshaw RL, Vaidyanathan G, Cornejo MA, Zeglis BM, et al. Site-specific Radiohalogenation of a HER2-Targeted single-domain antibody fragment using a Novel Residualizing Prosthetic Agent. J Med Chem. 2022;65:15358–73. https://doi.org/10.1021/acs.jmedchem.2c01331.
Article CAS PubMed PubMed Central Google Scholar
Cleeren F, Lecina J, Ahamed M, Raes G, Devoogdt N, Caveliers V, et al. Al18F-labeling of heat-sensitive biomolecules for positron emission tomography imaging. Theranostics. 2017;7:2924–39. https://doi.org/10.71502/Fthno.20094.
Article CAS PubMed PubMed Central Google Scholar
Cleeren F, Lecina J, Bridoux J, Devoogdt N, Tshibangu T, Xavier C, Bormans G. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nat Protoc. 2018;13:2330–47. https://doi.org/10.1038/s41596-018-0040-7.
Article CAS PubMed Google Scholar
Yao Y, Hou X, Liu S, Liu T, Ren Y, Ma X, et al. Construction and preclinical evaluation of a 124/125I-Labeled specific antibody targeting PD-L2 in Lung Cancer. Mol Pharm. 2023;20:1365–74. https://doi.org/10.1021/acs.molpharmaceut.2c00958.
Article CAS PubMed Google Scholar
Jiang D, Lu X, Li Z, Rydberg N, Zuo C, Peng F, et al. Increased vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) expression in adolescent brain development: a longitudinal micro-PET/CT study in rodent. Front Neurosci. 2019;12. https://doi.org/10.3389/fnins.2018.01052.
Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54. https://doi.org/10.3389/fnins.2018.01052.
Article CAS PubMed Google Scholar
Xie T, Zaidi H. Evaluation of radiation dose to anthropomorphic paediatric models from positron-emitting labelled tracers. Phys Med Biol. 2014;59:1165–87. https://doi.org/10.1088/0031-9155/59/5/1165.
Article CAS PubMed Google Scholar
Xie T, Zanotti-Fregonara P, Edet-Sanson A, Zaidi H. Patient-specific computational model and dosimetry calculations for PET/CT of a patient pregnant with twins. J Nucl Med. 2018;59:1451–8. https://doi.org/10.2967/jnumed.117.205286.
Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund K, et al. ICRP publication 128: Radiation dose to patients from Radiopharmaceuticals: a compendium of current information related to frequently used substances. Ann ICRP. 2015;44:7–321. https://doi.org/10.1177/0146645320936035.
Article CAS PubMed Google Scholar
Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al. Phase i study of 68Ga-HER2-Nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57:27–33. https://doi.org/10.2967/jnumed.115.162024.
Article CAS PubMed Google Scholar
Walker RC, Smith GT, Liu E, Moore B, Clanton J, Stabin M. Measured human dosimetry of 68Ga-DOTATATE. J Nucl Med. 2013;54:855–60. https://doi.org/10.2967/jnumed.112.114165.
Article CAS PubMed Google Scholar
Sharma A, Blériot C, Currenti J, Ginhoux F. Oncofetal reprogramming in tumour development and progression. Nat Rev Cancer. 2022;22:593–602. https://doi.org/10.1038/s41568-022-00497-8.
Article CAS PubMed Google Scholar
Marchand A, Fenoglio CM, Pascal R, Richart RM, Bennett S. Carcinoembryonic antigen in human ovarian neoplasms. Cancer Res. 1975;35:3807–10. https://aacrjournals.org/cancerres/article/35/12/3807/480498/Carcinoembryonic-Antigen-in-Human-Ovarian.
Laurence DTR, Stevens U, Bettelheim R, Darcy D, Leese C, Turberville C, et al. Role of plasma Carcinoembryonic Antigen in diagnosis of gastrointestinal, mammary, and bronchial carcinoma. Br Med J. 1972;3:605–9. https://doi.org/10.1136/bmj.3.5827.605.
Comments (0)