Investigation into temporal changes in the human bloodstain lipidome

Gefrides L, Welch K (2011) Forensic Biology: Serology and DNA. In: Mozayani A, Noziglia C (eds) The Forensic Laboratory Handbook Procedures and Practice. Humana Press, Totowa, NJ, pp 15–50

Chapter  Google Scholar 

Bremmer RH, de Bruin KG, van Gemert MJC, van Leeuwen TG, Aalders MCG (2012) Forensic quest for age determination of bloodstains. Forensic Sci Int 216(1):1–11

Article  PubMed  CAS  Google Scholar 

Doty KC, Muro CK, Lednev IK (2017) Predicting the time of the crime: Bloodstain aging estimation for up to two years. Forensic Chem 5:1–7

Article  CAS  Google Scholar 

Zadora G, Menżyk A (2018) In the pursuit of the holy grail of forensic science – Spectroscopic studies on the estimation of time since deposition of bloodstains. TRAC-TREND ANAL CHEM 105:137–165

Article  CAS  Google Scholar 

Fang C, Zhao J, Li J, Qian J, Liu X, Sun Q et al (2019) Massively parallel sequencing of microRNA in bloodstains and evaluation of environmental influences on miRNA candidates using realtime polymerase chain reaction. Forensic Sci Int Genet 38:32–38

Article  PubMed  CAS  Google Scholar 

Fu J, Allen RW (2019) A method to estimate the age of bloodstains using quantitative PCR. Forensic Sci Int Genet 39:103–108

Article  PubMed  CAS  Google Scholar 

Zubakov D, Liu F, Kokmeijer I, Choi Y, van Meurs JBJ, I.W.F.J. van, et al (2016) Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Sci Int Genet 24:33–43

Article  PubMed  CAS  Google Scholar 

Seok AE, Lee J, Lee YR, Lee YJ, Kim HJ, Ihm C et al (2018) Estimation of Age of Bloodstains by Mass-Spectrometry: A Metabolomic Approach. Anal Chem 90(21):12431–12441

Article  PubMed  CAS  Google Scholar 

Huang Y, Yan J, Hou J, Fu X, Li L, Hou Y (2015) Developing a DNA methylation assay for human age prediction in blood and bloodstain. Forensic Sci Int Genet 17:129–136

Article  PubMed  CAS  Google Scholar 

Palmer EA, Cooper HJ, Dunn WB (2019) Investigation of the 12-Month Stability of Dried Blood and Urine Spots Applying Untargeted UHPLC-MS Metabolomic Assays. Anal Chem 91(22):14306–14313

Article  PubMed  CAS  Google Scholar 

Schneider TD, Kraemer T, Steuer AE (2023) Determination of the Time since Deposition of blood-traces in a forensic context: Application of untargeted LC-HR-MS/MS metabolomics profiling. Drug Test Anal 15(8):840–852

Article  PubMed  CAS  Google Scholar 

Koulman A, Prentice P, Wong MCY, Matthews L, Bond NJ, Eiden M et al (2014) The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism. Metabolomics 10(5):1018–1025

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao F, McDaniel J, Chen EY, Rockwell HE, Drolet J, Vishnudas VK et al (2017) Dynamic and temporal assessment of human dried blood spot MS/MS(ALL) shotgun lipidomics analysis. Nutr Metab (Lond) 14:28

Article  PubMed  Google Scholar 

Kyle JE, Casey CP, Stratton KG, Zink EM, Kim YM, Zheng X et al (2017) Comparing identified and statistically significant lipids and polar metabolites in 15-year old serum and dried blood spot samples for longitudinal studies. Rapid Commun Mass Spectrom 31(5):447–456

Article  PubMed  PubMed Central  CAS  Google Scholar 

Prentice P, Turner C, Wong MC, Dalton RN (2013) Stability of metabolites in dried blood spots stored at different temperatures over a 2-year period. Bioanalysis 5(12):1507–1514

Article  PubMed  CAS  Google Scholar 

Fingerhut R, Ensenauer R, Röschinger W, Arnecke R, Olgemöller B, Roscher AA (2009) Stability of Acylcarnitines and Free Carnitine in Dried Blood Samples: Implications for Retrospective Diagnosis of Inborn Errors of Metabolism and Neonatal Screening for Carnitine Transporter Deficiency. Anal Chem 81(9):3571–3575

Article  PubMed  CAS  Google Scholar 

van Rijt WJ, Schielen P, Özer Y, Bijsterveld K, van der Sluijs FH, Derks TGJ et al (2020) Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism. Int J Neonatal Screen 6(4):83

Article  PubMed  PubMed Central  Google Scholar 

Metherel AH, Hogg RC, Buzikievich LM, Stark KD (2013) Butylated hydroxytoluene can protect polyunsaturated fatty acids in dried blood spots from degradation for up to 8 weeks at room temperature. Lipids Health Dis 12:22

Article  PubMed  PubMed Central  CAS  Google Scholar 

Drzymała-Czyż S, Janich S, Klingler M, Demmelmair J, Walkowiak J, Koletzko B (2017) Whole blood glycerophospholipids in dried blood spots - a reliable marker for the fatty acid status. Chem Phys Lipids 207(Pt A):1–9

Article  PubMed  Google Scholar 

Pupillo D, Simonato M, Cogo PE, Lapillonne A, Carnielli VP (2016) Short-Term Stability of Whole Blood Polyunsaturated Fatty Acid Content on Filter Paper During Storage at -28 °C. Lipids 51(2):193–198

Article  PubMed  CAS  Google Scholar 

Metherel AH, Aristizabal Henao JJ, Stark KD (2013) EPA and DHA levels in whole blood decrease more rapidly when stored at -20 °C as compared with room temperature, 4 and -75 °C. Lipids 48(11):1079–1091

Article  PubMed  CAS  Google Scholar 

Caballero-Moreno L, Luna A, Legaz I (2024) Lipidomes in Cadaveric Decomposition and Determination of the Postmortem Interval: A Systematic Review. Int J Mol Sci 25(2):984

Article  PubMed  PubMed Central  CAS  Google Scholar 

Le Faouder P, Soullier J, Tremblay-Franco M, Tournadre A, Martin J-F, Guitton Y et al (2021) Untargeted Lipidomic Profiling of Dry Blood Spots Using SFC-HRMS. Metabolites 11(5):305

Article  PubMed  PubMed Central  Google Scholar 

Al-Thihli K, Sinclair G, Sirrs S, Mezei M, Nelson J, Vallance H (2014) Performance of serum and dried blood spot acylcarnitine profiles for detection of fatty acid β-oxidation disorders in adult patients with rhabdomyolysis. J Inherit Metab Dis 37(2):207–213

Article  PubMed  CAS  Google Scholar 

Primassin S, Spiekerkoetter U (2010) ESI-MS/MS measurement of free carnitine and its precursor γ-butyrobetaine in plasma and dried blood spots from patients with organic acidurias and fatty acid oxidation disorders. Mol Genet Metab 101(2):141–145

Article  PubMed  CAS  Google Scholar 

Li K, Naviaux JC, Monk JM, Wang L, Naviaux RK (2020) Improved Dried Blood Spot-Based Metabolomics: A Targeted, Broad-Spectrum. Single-Injection Method Metabolites 10(3):82

PubMed  CAS  Google Scholar 

Aristizabal Henao JJ, Metherel AH, Smith RW, Stark KD (2016) Tailored Extraction Procedure Is Required To Ensure Recovery of the Main Lipid Classes in Whole Blood When Profiling the Lipidome of Dried Blood Spots. Anal Chem 88(19):9391–9396

Article  PubMed  CAS  Google Scholar 

Lam SM, Zhang C, Wang Z, Ni Z, Zhang S, Yang S et al (2021) A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat Metab 3(7):909–922

Article  PubMed  CAS  Google Scholar 

Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA et al (2012) Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J Biol Chem 287(4):2678–2688

Article  PubMed  CAS  Google Scholar 

Shui G, Guan XL, Low CP, Chua GH, Goh JSY, Yang H et al (2010) Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Mol Biosyst 6(6):1008–1017

Article  PubMed  CAS 

Comments (0)

No login
gif