International Agency for Research on Cancer Cancer tomorrow. 2020. https://gco.iarc.fr/tomorrow/en
Lauby-Secretan B, Scoccianti C, Loomis D et al (2015) Breast-cancer screening—Viewpoint of the IARC Working Group. N Engl J Med 372:2353–2358
Article CAS PubMed Google Scholar
Ohuchi N, Suzuki A, Sobue T et al (2016) Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 387:341–348
Saadatmand S, Geuzinge HA, Rutgers EJT et al (2019) MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomised, controlled trial. Lancet Oncol 20:1136–1147. https://doi.org/10.1016/S1470-2045(19)30275-X
Mann RM, Kuhl CK, Moy L (2019) Contrast-enhanced MRI for breast cancer screening. J Magn Reson Imag 50:377–390. https://doi.org/10.1002/jmri.26654
Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539
Article CAS PubMed Google Scholar
Boyd NF, Guo H, Martin LJ et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236. https://doi.org/10.1056/NEJMoa062790
Article CAS PubMed Google Scholar
Mann RM, Athanasiou A, Baltzer PAT et al (2022) Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI). Eur Radiol 32:4036–4045. https://doi.org/10.1007/s00330-022-08617-6
Article PubMed PubMed Central Google Scholar
Spak DA, Plaxco JS, Santiago L et al (2017) BI-RADS®, 5th ed.: summary of changes. Diagn Interv Imag 98:179–190. https://doi.org/10.1016/j.diii.2017.01.001
Bodewes FTH, van Asselt AA, Dorrius MD et al (2022) Mammographic breast density and the risk of breast cancer: a systematic review and meta-analysis. Breast 66:62–68. https://doi.org/10.1016/j.breast.2022.09.007
Article CAS PubMed PubMed Central Google Scholar
Spayne MC, Gard CC, Skelly J et al (2012) Reproducibility of BI-RADS breast density measures among community radiologists: a prospective cohort study. Breast J 18:326–333. https://doi.org/10.1111/j.1524-4741.2012.01250.x
Lehman CD, Yala A, Schuster T et al (2019) Mammographic breast density assessment using deep learning: clinical implementation. Radiology 290:52–58. https://doi.org/10.1148/radiol.2018180694
Rigaud B, Weaver OO, Dennison JB et al (2022) Deep learning models for automated assessment of breast density using multiple Mammographic image types. Cancers (Basel) 14:5003. https://doi.org/10.3390/cancers14205003
Gastounioti A, Desai S, Ahluwalia VS et al (2022) Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Res 24:14
Article CAS PubMed PubMed Central Google Scholar
Astley SM, Harkness EF, Sergeant JC et al (2018) A comparison of five methods of measuring mammographic density: a case-control study. Breast Cancer Res 20:10. https://doi.org/10.1186/s13058-018-0932-z
Article PubMed PubMed Central Google Scholar
Paci E, Mantellini P, Giorgi Rossi P et al (2013) Tailored breast screening trial (TBST). Epidemiol Prev 37:317–327
Esserman LJ, WISDOM Study and Athena Investigators (2017) The WISDOM study: Breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer 3:34
Article PubMed PubMed Central Google Scholar
Yala A, Lehman C, Schuster T et al (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292:60–66
Kim WH, Chang JM, Lee J et al (2017) Diagnostic performance of tomosynthesis and breast ultrasonography in women with dense breasts: a prospective comparison study. Breast Cancer Res Treat 162:85–94
Comstock CE, Gatsonis C, Newstead GM et al (2020) Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA 323:746–756. https://doi.org/10.1001/jama.2020.0572
Article PubMed PubMed Central Google Scholar
Lebron-Zapata L, Jochelson MS (2018) Overview of breast cancer screening and diagnosis. PET Clin 13:301–323. https://doi.org/10.1016/j.cpet.2018.02.001
Rao VM, Levin DC, Parker L et al (2010) How widely is computer-aided detection used in screening and diagnostic mammography? J Am Coll Radiol 7:802–805
Le EPV, Wang Y, Huang Y et al (2019) Artificial intelligence in breast imaging. Clin Radiol 74:357–366
Article CAS PubMed Google Scholar
Lehman CD, Wellman RD, Buist DSM et al (2015) Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med 175:1828–1837
Article PubMed PubMed Central Google Scholar
McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94
Article CAS PubMed Google Scholar
Larsen M, Aglen CF, Lee CI et al (2022) Artificial intelligence evaluation of 122969 mammography examinations from a population-based screening program. Radiology 303:502–511
Lång K, Josefsson V, Larsson AM et al (2023) Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (Masai): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol 24:936–944
Lee SE, Han K, Kwak JY et al (2018) Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma. Sci Rep 8:13546. https://doi.org/10.1038/s41598-018-31906-4
Article CAS PubMed PubMed Central Google Scholar
Whitney HM, Li H, Ji Y et al (2020) Harmonization of radiomic features of breast lesions across international DCE-MRI datasets. J Med Imag (Bellingham) 7:012707. https://doi.org/10.1117/1.JMI.7.1.012707
Herent P, Schmauch B, Jehanno P et al (2019) Detection and characterization of MRI breast lesions using deep learning. Diagn Interv Imag 100:219–225
Fleury E, Marcomini K (2019) Performance of machine learning software to classify breast lesions using BI-RADS radiomic features on ultrasound images. Eur Radiol Exp 3:34
Article PubMed PubMed Central Google Scholar
Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70
Fowler AM, Mankoff DA, Joe BN (2017) Imaging neoadjuvant therapy response in breast cancer. Radiology 285:358–375
Comments (0)