Current status and prospects of breast cancer imaging-based diagnosis using artificial intelligence

International Agency for Research on Cancer Cancer tomorrow. 2020. https://gco.iarc.fr/tomorrow/en

Lauby-Secretan B, Scoccianti C, Loomis D et al (2015) Breast-cancer screening—Viewpoint of the IARC Working Group. N Engl J Med 372:2353–2358

Article  CAS  PubMed  Google Scholar 

Ohuchi N, Suzuki A, Sobue T et al (2016) Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 387:341–348

Article  PubMed  Google Scholar 

Saadatmand S, Geuzinge HA, Rutgers EJT et al (2019) MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomised, controlled trial. Lancet Oncol 20:1136–1147. https://doi.org/10.1016/S1470-2045(19)30275-X

Article  PubMed  Google Scholar 

Mann RM, Kuhl CK, Moy L (2019) Contrast-enhanced MRI for breast cancer screening. J Magn Reson Imag 50:377–390. https://doi.org/10.1002/jmri.26654

Article  Google Scholar 

Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

Article  CAS  PubMed  Google Scholar 

Boyd NF, Guo H, Martin LJ et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236. https://doi.org/10.1056/NEJMoa062790

Article  CAS  PubMed  Google Scholar 

Mann RM, Athanasiou A, Baltzer PAT et al (2022) Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI). Eur Radiol 32:4036–4045. https://doi.org/10.1007/s00330-022-08617-6

Article  PubMed  PubMed Central  Google Scholar 

Spak DA, Plaxco JS, Santiago L et al (2017) BI-RADS®, 5th ed.: summary of changes. Diagn Interv Imag 98:179–190. https://doi.org/10.1016/j.diii.2017.01.001

Article  CAS  Google Scholar 

Bodewes FTH, van Asselt AA, Dorrius MD et al (2022) Mammographic breast density and the risk of breast cancer: a systematic review and meta-analysis. Breast 66:62–68. https://doi.org/10.1016/j.breast.2022.09.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spayne MC, Gard CC, Skelly J et al (2012) Reproducibility of BI-RADS breast density measures among community radiologists: a prospective cohort study. Breast J 18:326–333. https://doi.org/10.1111/j.1524-4741.2012.01250.x

Article  PubMed  Google Scholar 

Lehman CD, Yala A, Schuster T et al (2019) Mammographic breast density assessment using deep learning: clinical implementation. Radiology 290:52–58. https://doi.org/10.1148/radiol.2018180694

Article  PubMed  Google Scholar 

Rigaud B, Weaver OO, Dennison JB et al (2022) Deep learning models for automated assessment of breast density using multiple Mammographic image types. Cancers (Basel) 14:5003. https://doi.org/10.3390/cancers14205003

Article  PubMed  Google Scholar 

Gastounioti A, Desai S, Ahluwalia VS et al (2022) Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Res 24:14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Astley SM, Harkness EF, Sergeant JC et al (2018) A comparison of five methods of measuring mammographic density: a case-control study. Breast Cancer Res 20:10. https://doi.org/10.1186/s13058-018-0932-z

Article  PubMed  PubMed Central  Google Scholar 

Paci E, Mantellini P, Giorgi Rossi P et al (2013) Tailored breast screening trial (TBST). Epidemiol Prev 37:317–327

PubMed  Google Scholar 

Esserman LJ, WISDOM Study and Athena Investigators (2017) The WISDOM study: Breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer 3:34

Article  PubMed  PubMed Central  Google Scholar 

Yala A, Lehman C, Schuster T et al (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292:60–66

Article  PubMed  Google Scholar 

Kim WH, Chang JM, Lee J et al (2017) Diagnostic performance of tomosynthesis and breast ultrasonography in women with dense breasts: a prospective comparison study. Breast Cancer Res Treat 162:85–94

Article  PubMed  Google Scholar 

Comstock CE, Gatsonis C, Newstead GM et al (2020) Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA 323:746–756. https://doi.org/10.1001/jama.2020.0572

Article  PubMed  PubMed Central  Google Scholar 

Lebron-Zapata L, Jochelson MS (2018) Overview of breast cancer screening and diagnosis. PET Clin 13:301–323. https://doi.org/10.1016/j.cpet.2018.02.001

Article  PubMed  Google Scholar 

Rao VM, Levin DC, Parker L et al (2010) How widely is computer-aided detection used in screening and diagnostic mammography? J Am Coll Radiol 7:802–805

Article  PubMed  Google Scholar 

Le EPV, Wang Y, Huang Y et al (2019) Artificial intelligence in breast imaging. Clin Radiol 74:357–366

Article  CAS  PubMed  Google Scholar 

Lehman CD, Wellman RD, Buist DSM et al (2015) Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med 175:1828–1837

Article  PubMed  PubMed Central  Google Scholar 

McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94

Article  CAS  PubMed  Google Scholar 

Larsen M, Aglen CF, Lee CI et al (2022) Artificial intelligence evaluation of 122969 mammography examinations from a population-based screening program. Radiology 303:502–511

Article  PubMed  Google Scholar 

Lång K, Josefsson V, Larsson AM et al (2023) Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (Masai): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol 24:936–944

Article  PubMed  Google Scholar 

Lee SE, Han K, Kwak JY et al (2018) Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma. Sci Rep 8:13546. https://doi.org/10.1038/s41598-018-31906-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whitney HM, Li H, Ji Y et al (2020) Harmonization of radiomic features of breast lesions across international DCE-MRI datasets. J Med Imag (Bellingham) 7:012707. https://doi.org/10.1117/1.JMI.7.1.012707

Article  Google Scholar 

Herent P, Schmauch B, Jehanno P et al (2019) Detection and characterization of MRI breast lesions using deep learning. Diagn Interv Imag 100:219–225

Article  CAS  Google Scholar 

Fleury E, Marcomini K (2019) Performance of machine learning software to classify breast lesions using BI-RADS radiomic features on ultrasound images. Eur Radiol Exp 3:34

Article  PubMed  PubMed Central  Google Scholar 

Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

Article  Google Scholar 

Fowler AM, Mankoff DA, Joe BN (2017) Imaging neoadjuvant therapy response in breast cancer. Radiology 285:358–375

Article  PubMed  Google Scholar 

Comments (0)

No login
gif