Trentacosta CJ, Mulligan DJ. New directions in understanding the role of environmental contaminants in child development: four themes. New Dir Child Adolesc Dev. 2020;2020(172):39–51.
Article PubMed PubMed Central Google Scholar
Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110(3suppl 3):451–88.
PubMed PubMed Central Google Scholar
Choi H, Harrison R, Komulainen H, Delgado Saborit JM. Polycyclic aromatic hydrocarbons. World Health Organization; 2010.
Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut. 1991;60(3):279–300.
Zhu L, Takahashi Y, Amagai T, Matsushita H. Highly sensitive automatic analysis of polycyclic aromatic hydrocarbons in indoor and outdoor air. Talanta. 1997;45(1):113–8.
Article CAS PubMed Google Scholar
Fromme H, Oddoy A, Piloty M, Krause M, Lahrz T. Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci Total Environ. 1998;217(1–2):165–73.
Article CAS PubMed Google Scholar
Li C-S, Ro Y-S. Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmos Environ (1994). 2000;34(4):611–20.
Lung S-CC, Kao M-C, Hu S-C. Contribution of incense burning to indoor PM10 and particle-bound polycyclic aromatic hydrocarbons under two ventilation conditions. Indoor Air. 2003;13(2):194–9.
Article CAS PubMed Google Scholar
Lau C, Fiedler H, Hutzinger O, Schwind KH, Hosseinpour J. Levels of selected organic compounds in materials for candle production and human exposure to candle emissions. Chemosphere. 1997;34(5–7):1623–30.
Article CAS PubMed Google Scholar
U.S. Environmental Protection Agency (EPA). Exposure factors handbook. 2011th ed. Washington, DC: National Center for Environmental Assessment; 2011.
Agency for Toxic Substances and Disease Registry. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs) (update). Atlanta, GA: US Department of Health and Human Services.
Chen Z, Salam MT, Eckel SP, Breton CV, Gilliland FD. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children’s Health Study. J Thorac Dis. 2015;7(1):46–58.
PubMed PubMed Central Google Scholar
Air pollution and child health: prescribing clean air [Internet]. World Health Organization. 2018 [cited 2024 Aug 16]. https://www.who.int/publications/i/item/WHO-CED-PHE-18-01
Ghosh R, Causey K, Burkart K, Wozniak S, Cohen A, Brauer M. Ambient and household PM2.5 pollution and adverse perinatal outcomes: a meta-regression and analysis of attributable global burden for 204 countries and territories. PLoS Med. 2021;18(9):e1003718.
Article CAS PubMed PubMed Central Google Scholar
Mendoza-Sanchez I, Uwak I, Myatt L, Van Cleve A, Pulczinski JC, Rychlik KA, et al. Maternal exposure to polycyclic aromatic hydrocarbons in South Texas, evaluation of silicone wristbands as personal passive samplers. J Expo Sci Environ Epidemiol. 2022;32(2):280–8.
Article CAS PubMed Google Scholar
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. Ecotoxicol Environ Saf. 2023;262(115314):115314.
Article CAS PubMed Google Scholar
Hajat A, Hsia C, O’Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr Environ Health Rep. 2015;2(4):440–50.
Article CAS PubMed PubMed Central Google Scholar
Choi H, Harrison R, Komulainen H, Delgado Saborit JM. In: Leger A, D’Hendecourt L, Boccara N, editors. Polycyclic aromatic hydrocarbons and astrophysics. Dordrecht, Netherlands: Springer; 2011. p. 402.
Rahman HH, Niemann D, Munson-McGee SH. Association among urinary polycyclic aromatic hydrocarbons and depression: a cross-sectional study from NHANES 2015–2016. Environ Sci Pollut Res Int. 2022;29(9):13089–97.
Article CAS PubMed Google Scholar
Zhang L, Sun J, Zhang D. The relationship between urine polycyclic aromatic hydrocarbons and depressive symptoms in American adults. J Affect Disord. 2021;292:227–33.
Article CAS PubMed Google Scholar
Zhen H, Zhang F, Cheng H, Hu F, Jia Y, Hou Y, et al. Association of polycyclic aromatic hydrocarbons exposure with child neurodevelopment and adult emotional disorders: a meta-analysis study. Ecotoxicol Environ Saf. 2023;255:114770.
Article CAS PubMed Google Scholar
Rojas GA, Saavedra N, Saavedra K, Hevia M, Morales C, Lanas F, et al. Polycyclic aromatic hydrocarbons (PAHs) exposure triggers inflammation and endothelial dysfunction in BALB/c mice: a pilot study. Toxics. 2022;10(9):497.
Article CAS PubMed PubMed Central Google Scholar
Bauer AK, Velmurugan K, Plöttner S, Siegrist KJ, Romo D, Welge P, et al. Environmentally prevalent polycyclic aromatic hydrocarbons can elicit co-carcinogenic properties in an in vitro murine lung epithelial cell model. Arch Toxicol. 2018;92(3):1311–22.
Article CAS PubMed Google Scholar
Bright A, Li F, Movahed M, Shi H, Xue B. Chronic exposure to low-molecular-weight polycyclic aromatic hydrocarbons promotes lipid accumulation and metabolic inflammation. Biomolecules. 2023;13(2):196.
Article CAS PubMed PubMed Central Google Scholar
Varshavsky J, Smith A, Wang A, Hom E, Izano M, Huang H, et al. Heightened susceptibility: a review of how pregnancy and chemical exposures influence maternal health. Reprod Toxicol. 2020;92:14–56.
Article CAS PubMed Google Scholar
Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, et al. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ Health Perspect. 2012;120(6):921–6.
Article CAS PubMed PubMed Central Google Scholar
Allen JL, Liu X, Pelkowski S, Palmer B, Conrad K, Oberdörster G, et al. Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ Health Perspect. 2014;122(9):939–45.
Article PubMed PubMed Central Google Scholar
Klocke C, Allen JL, Sobolewski M, Mayer-Pröschel M, Blum JL, Lauterstein D, et al. Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Toxicol Sci. 2017;156(2):492–508.
CAS PubMed PubMed Central Google Scholar
Margolis AE, Cohen JW, Ramphal B, Thomas L, Rauh V, Herbstman J, et al. Prenatal exposure to air pollution and early-life stress effects on hippocampal subregional volumes and associations with visuospatial reasoning. Biol Psychiatry Glob Open Sci. 2022;2(3):292–300.
Article PubMed PubMed Central Google Scholar
Tachibana K, Takayanagi K, Akimoto A, Ueda K, Shinkai Y, Umezawa M, et al. Prenatal diesel exhaust exposure disrupts the DNA methylation profile in the brain of mouse offspring. J Toxicol Sci. 2015;40(1):1–11.
Article CAS PubMed Google Scholar
Bolton JL, Huff NC, Smith SH, Mason SN, Foster WM, Auten RL, et al. Maternal stress and effects of prenatal air pollution on offspring mental health outcomes in mice. Environ Health Perspect. 2013;121(9):1075–82.
Article PubMed PubMed Central Google Scholar
Goodman SH, Rouse MH, Connell AM, Broth MR, Hall CM, Heyward D. Maternal depression and child psychopathology: a meta-analytic review. Clin Child Fam Psychol Rev. 2011;14(1):1–27.
Szekely E, Neumann A, Sallis H, Jolicoeur-Martineau A, Verhulst FC, Meaney MJ, et al. Maternal prenatal mood, pregnancy-specific worries, and early child psychopathology: findings from the DREAM BIG consortium. J Am Acad Child Adolesc Psychiatry. 2021;60(1):186–97.
Comments (0)