World Health organization. Breast Cancer. WHO. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.
Rakha EA, Green AR. Molecular classification of breast cancer: what the pathologist needs to know. Pathology (Phila). 2017;49(2):111–9. Available from: https://www.sciencedirect.com/science/article/pii/S003130251640365X.
Orrantia-Borunda E, Anchondo-Nuñez P, Acuña-Aguilar LE, Gómez-Valles FO, Ramírez-Valdespino CA. Subtypes of Breast Cancer. In: Mayrovitz HN, editor. Breast Cancer. Brisbane (AU): Exon Publications; 2022. Available from: http://www.ncbi.nlm.nih.gov/books/NBK583808/.
Miah S, Bagu E, Goel R, Ogunbolude Y, Dai C, Ward A, et al. Estrogen receptor signaling regulates the expression of the breast tumor kinase in breast cancer cells. BMC Cancer. 2019 19(1):78. Available from: https://doi.org/10.1186/s12885-018-5186-8.
Wei S. Hormone receptors in breast cancer: An update on the uncommon subtypes. Pathol - Res Pract. 2023;250:154791. Available from: https://www.sciencedirect.com/science/article/pii/S0344033823004910.
Giulianelli S, Lamb CA, Lanari C. Progesterone receptors in normal breast development and breast cancer. Vol. 65, Essays in Biochemistry. 2021. p. 951–69. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120976432&doi=10.1042%2fEBC20200163&partnerID=40&md5=acd08f222df8513967faaa0ed8b83661.
Purdie CA, Quinlan P, Jordan LB, Ashfield A, Ogston S, Dewar JA, et al. Progesterone receptor expression is an independent prognostic variable in early breast cancer: a population-based study. Br J Cancer. 2014 110(3):565–72. Available from: https://doi.org/10.1038/bjc.2013.756.
Ahn S, Woo JW, Lee K, Park SY. HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J Pathol Transl Med. 2020;54(1):34–44. Available from: http://jpatholtm.org/journal/view.php?doi=10.4132/jptm.2019.11.03.
L Yin JJ Duan XW Bian SC Yu. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 22(1):61 Available from: https://doi.org/10.1186/s13058-020-01296-5.
Mussallem D. Lifestyle for breast cancer risk reduction. Vol. 29, Menopause. 2022. p. 979–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85135421168&doi=10.1097%2fGME.0000000000002006&partnerID=40&md5=31985b3c3807840eaccb3c35c55983f5.
Daly AA, Rolph R, Cutress RI, Copson ER. A review of modifiable risk factors in young women for the prevention of breast cancer. Vol. 13, Breast Cancer: Targets and Therapy. 2021. p. 241–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104776317&doi=10.2147%2fBCTT.S268401&partnerID=40&md5=e3ac32d105c5d6d8502ed82199a958ba.
Vogel VG. Epidemiology of breast cancer. The breast: comprehensive management of benign and malignant diseases. 2018. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054344161&doi=10.1016%2fB978-0-323-35955-9.00015-5&partnerID=40&md5=e76c02b2aea40c1dca8b170479cce5fc.
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers. 2021;13(17):4287.
Article PubMed PubMed Central Google Scholar
Toss A, Grandi G, Cagnacci A, Marcheselli L, Pavesi S, De Matteis E, et al. The impact of reproductive life on breast cancer risk in women with family history or BRCA mutation. Vol. 8, Oncotarget. 2017. p. 9144–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011968931&doi=10.18632%2foncotarget.13423&partnerID=40&md5=8a37d5de6e499622877a398d502747e3.
Dall GV, Britt KL. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Vol. 7, Frontiers in Oncology. 2017. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020099244&doi=10.3389%2ffonc.2017.00110&partnerID=40&md5=1a8813b5d371e1b0b3c9d91e83460635.
Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2024). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.who.int/today.
WHO 2022. Breast Cancer TODAY. Global Cancer Observatory. 2022. Available from: https://gco.iarc.who.int/media/globocan/factsheets/cancers/20-breast-fact-sheet.pdf.
F Ye S Dewanjee Y Li NK Jha ZS Chen A Kumar Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. et al 2023 22(1):105 Available from: https://doi.org/10.1186/s12943-023-01805-y.
Haq BU, Aisha S, Sofi S, Mir MA. Chemotherapy in combination with surgery and radiotherapy in breast cancer. combination therapies and their effectiveness in breast cancer treatment. 2021. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129037124&doi=10.52305%2fZMNJ6932&partnerID=40&md5=be23a021805a79b4ae9d9266428ea73a.
Rose L, Lustberg M, Ruddy KJ, Cathcart-Rake E, Loprinzi C, Dulmage B. Hair loss during and after breast cancer therapy. Vol. 31, Supportive Care in Cancer. 2023. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148936617&doi=10.1007%2fs00520-023-07634-5&partnerID=40&md5=6d7f27a7934f5f3202e2031aa5334df3.
Singh KP, Kober KM, Ernst B, Sachdev J, Brewer M, Zhu Q, et al. Multiple gastrointestinal symptoms are associated with chemotherapy-induced nausea in patients with breast cancer. Vol. 45, Cancer Nursing. 2022. p. 181–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124124568&doi=10.1097%2fNCC.0000000000000976&partnerID=40&md5=2364ebccb9478ff089fbf51e61234009.
Salata C, deAlmeida CE, Ferreira-Machado SC, Barroso RC, Nogueira LP, Mantuano A, et al. Preliminary pre-clinical studies on the side effects of breast cancer treatment. Vol. 97, International Journal of Radiation Biology. 2021. p. 877–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105387534&doi=10.1080%2f09553002.2021.1919782&partnerID=40&md5=fd79f5870924b4a43d935f0f9cd57429.
Han H, Chen J, Li J, Correia A, Bártolo R, Shahbazi MA, et al. Enhancing apoptosome assembly via mito-biomimetic lipid nanocarrier for cancer therapy. Adv Funct Mater. 2023;33(46):2305316. Available from: https://doi.org/10.1002/adfm.202305316.
Tapeinos C, Torrieri G, Wang S, Martins JP, Santos HA. Evaluation of cell membrane-derived nanoparticles as therapeutic carriers for pancreatic ductal adenocarcinoma using an in vitro tumour stroma model. J Controlled Release. 2023;362:225–42. Available from: https://www.sciencedirect.com/science/article/pii/S016836592300545X.
Javid H, Attarian F, Saadatmand T, Rezagholinejad N, Mehri A, Amiri H, et al. The therapeutic potential of immunotherapy in the treatment of breast cancer: Rational strategies and recent progress. J Cell Biochem. 2023;124(4):477–94. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jcb.30402.
Li J, Huang D, Cheng R, Figueiredo P, Fontana F, Correia A, et al. Multifunctional biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores for the immunotherapy of solid tumors. Adv Mater. 2022;34(9):2108012. Available from: https://doi.org/10.1002/adma.202108012.
Alaluf E, Shalamov MM, Sonnenblick A. Update on current and new potential immunotherapies in breast cancer, from bench to bedside. Front Immunol. 2024;15. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1287824.
Hamilton AG, Swingle KL, Joseph RA, Mai D, Gong N, Billingsley MM, et al. Ionizable Lipid Nanoparticles with Integrated Immune Checkpoint Inhibition for mRNA CAR T Cell Engineering. Adv Healthc Mater. 2023;12(30): e2301515.
Sheikh MS, Huang Y. Antibody-drug conjugates for breast cancer treatment. Recent Patents Anticancer Drug Discov. 2023;18(2):108–13. Available from: https://www.eurekaselect.com/207119/article.
Phillips GDL, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, et al. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: critical role for neuregulin blockade in antitumor response to combination therapy. Clin Cancer Res. 2014 20(2):456–68. Available from: https://doi.org/10.1158/1078-0432.CCR-13-0358.
Ghahremani Dehbokri S, Alizadeh N, Isazadeh A, Baghbanzadeh A, Abbaspour-Ravasjani S, Hajiasgharzadeh K, et al. CTLA-4: As an Immunosuppressive Immune Checkpoint in Breast Cancer. Curr Mol Med. 2023;23(6):521–6. Available from: http://www.eurekaselect.com/article/124331.
Mariela A. Moreno Ayala AS Maria Florencia Gottardo, Antonela S Asad, Camila Zuccato, Alejandro Nicola, Candolfi M. Immunotherapy for the treatment of breast cancer. Expert Opin Biol Ther. 2017;17(7):797–812. Available from: https://doi.org/10.1080/14712598.2017.1324566.
Abbaspour M, Akbari V. Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Rev Vaccines. 2022;21(3):337–53. Available from: https://doi.org/10.1080/14760584.2022.2021884.
Mittendorf EA, Lu B, Melisko M, Price Hiller J, Bondarenko I, Brunt AM, et al. Efficacy and safety analysis of nelipepimut-s vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin Cancer Res. 2019 Jul;25(14):4248–54. Available from: https://doi.org/10.1158/1078-0432.CCR-18-2867.
Du S, Yan J, Xue Y, Zhong Y, Dong Y. Adoptive cell therapy for cancer treatment. Vol. 3, Exploration. 2023. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177753477&doi=10.1002%2fEXP.20210058&partnerID=40&md5=3d687479248404c8c1711f669c31ffa7.
Jiao C, Zvonkov E, Lai X, Zhang R, Liu Y, Qin Y, et al. 4SCAR2.0: a multi-CAR-T therapy regimen for the treatment of relapsed/refractory B cell lymphomas. Blood Cancer J. 2021;11(3):59. Available from: https://www.nature.com/articles/s41408-021-00455-x.
Wen P, Wu W, Wang F, Zheng H, Liao Z, Shi J, et al. Cell delivery devices for cancer immunotherapy. JCR. 2023. Vol. 353 p. 875–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144370755&doi=10.1016%2fj.jconrel.2022.11.041&partnerID=40&md5=5178e82f34aaadeca1f4cf715da2bf30.
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol. 2020;10(9):200111. Available from: https://doi.org/10.1098/rsob.200111.
Edechi CA, Ikeogu N, Uzonna JE, Myal Y. Regulation of immunity in breast cancer. Vol. 11, Cancers. 2019. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071155275&doi=10.3390%2fcancers11081080&partnerID=40&md5=6aa94c630dfd7f5cb36b4976fee2a3f4.
Gonzalez-Valdivieso J, Girotti A, Schneider J, Arias FJ. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int J Pharm Vol. 599, 2021. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102083296&doi=10.1016%2fj.ijpharm.2021.120438&partnerID=40&md5=f9eb0ee3464f2e3017b5d034e7897fcd.
Feng C, Chan D, Joseph J, Muuronen M, Coldren WH, Dai N, et al. Light-activated chemical probing of nucleobase solvent accessibility inside cells. Nat Chem Biol. 2018;14(3):276–83.
Article PubMed PubMed Central CAS Google Scholar
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater. 2021;6(9):766–83. Available from: https://doi.org/10.1038/s41578-021-00315-x.
Mundekkad D, Cho WC. Nanoparticles in clinical translation for cancer therapy. Int J Mol Sci Vol. 23, 2022. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123689428&doi=10.3390%2fijms23031685&partnerID=40&md5=17bc6fd3dd91f335b2aface81687564a.
Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, et al. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine. 2019 Volume 14:4961–74. Available from: https://www.dovepress.com/lipid-polymer-hybrid-nanoparticles-for-controlled-delivery-of-hydrophi-peer-reviewed-article-IJN.
Li J, Zhang W, Gao Y, Tong H, Chen Z, Shi J, et al. Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency. J Mater Chem B. 2020;8(3):546–57. Available from: https://doi.org/10.1039/C9TB02340B.
Basu B, Pal T, Mukherjee S, Prajapati BG. Bioactive lipids for the treatment of cancer. Therapeutic Platform of Bioactive Lipids: Focus on Cancer. 2023. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163216200&partnerID=40&md5=c17c409150d7d5b8ac98296227a561ed.
Veiga N, Diesendruck Y, Peer D. Targeted lipid nanoparticles for RNA therapeutics and immunomodulation in leukocytes. Adv Drug Deliv Rev. 2020;159:364–76. Available from: https://www.sciencedirect.com/science/article/pii/S0169409X20300223.
Ramishetti S, Kedmi R, Goldsmith M, Leonard F, Sprague AG, Godin B, et al. Systemic Gene Silencing in Primary T Lymphocytes Using Targeted Lipid Nanoparticles. ACS Nano. 2015 9(7):6706–16. Available from: https://doi.org/10.1021/acsnano.5b02796.
Elia U, Ramishetti S, Rosenfeld R, Dammes N, Bar-Haim E, Naidu GS, et al. Design of SARS-CoV-2 hFc-Conjugated Receptor-Binding Domain mRNA Vaccine Delivered via Lipid Nanoparticles. ACS Nano 2021;15(6):9627–37. Available from: https://doi.org/10.1021/acsnano.0c10180.
Swingle KL, Safford HC, Geisler HC, Hamilton AG, Thatte AS, Billingsley MM, et al. Ionizable Lipid Nanoparticles for In Vivo mRNA Delivery to the Placenta during Pregnancy. J Am Chem Soc. 2023 145(8):4691–706. Available from: https://doi.org/10.1021/jacs.2c12893.
Yan J, Zhang H, Li G, Su J, Wei Y, Xu C. Lipid nanovehicles overcome barriers to systemic RNA delivery: Lipid components, fabrication methods, and rational design. Vol. 14, Acta Pharmaceutica Sinica B. 2024. p. 579–601. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175617186&doi=10.1016%2fj.apsb.2023.10.012&partnerID=40&md5=0552afa1e811f8be4b6103eb178cb7f7.
Xue L, Gong N, Shepherd SJ, Xiong X, Liao X, Han X, et al. Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment. J Am Chem Soc. 2022 Jun 8;144(22):9926–37. Available from: https://doi.org/10.1021/jacs.2c02706.
Seo H, Jeon L, Kwon J, Lee H. High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater. 2023;12(13):2203033. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202203033.
Shepherd SJ, Warzecha CC, Yadavali S, El-Mayta R, Alameh MG, Wang L, et al. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Lett. 2021 21(13):5671–80. Available from: https://doi.org/10.1021/acs.nanolett.1c01353.
Shepherd SJ, Han X, Mukalel AJ, El-Mayta R, Thatte AS, Wu J, et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proc Natl Acad Sci. 2023;120(33):e2303567120. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.2303567120.
Jung HN, Lee SY, Lee S, Youn H, Im HJ. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics. 2022;12(17):7509–31. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691360/.
Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis \textbar Neurodegenerative Disease Management. 2024. Available from: https://www.futuremedicine.com/doi/10.2217/nmt-2018-0033.
Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, et al. Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) Therapy. Int J Mol Sci. Vol. 23, 2022. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137548958&doi=10.3390%2fijms231710068&partnerID=40&md5=14d907311c4c873ca9a18e8cd371e316.
Walsh EE, Frenck RWJ, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and immunogenicity of two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med. 2020;383(25):2439–50.
Article PubMed CAS Google Scholar
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–16.
Article PubMed CAS Google Scholar
Andresen JL, Fenton OS. Nucleic acid delivery and nanoparticle design for COVID vaccines. MRS Bull. 2021 Sep 1;46(9):832–9. Available from: https://doi.org/10.1557/s43577-021-00169-2.
B Li AY Jiang I Raji C Atyeo TM Raimondo AGR Gordon Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat Biomed Eng. et al 2023 Sep 7 Available from: https://doi.org/10.1038/s41551-023-01082-6.
Han X, Zhang H, Butowska K, Swingle KL, Alameh MG, Weissman D, et al. An ionizable lipid toolbox for RNA delivery. Nat Commun. 2021;12(1):7233. Available from: https://www.nature.com/articles/s41467-021-27493-0.
R Pattipeiluhu Y Zeng MMRM Hendrix IK Voets A Kros TH Sharp Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection. Nat Commun. 2024 15(1):1303 Available from: https://doi.org/10.1038/s41467-024-45666-5.
Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16(1):173.
Article PubMed PubMed Central CAS Google Scholar
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013 65(1):36–48. Available from: https://www.sciencedirect.com/science/article/pii/S0169409X12002980.
Huang Y, Liu C, Feng Q, Sun J. Microfluidic synthesis of nanomaterials for biomedical applications. Nanoscale Horiz. 2023;8(12):1610–27.
Article PubMed CAS Google Scholar
Lassalle V, Ferreira ML. PLA Nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci. 2007;7(6):767–83. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.200700022.
Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022 S;188:114416. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250827/.
Jung HN, Lee SY, Lee S, Youn H, Im HJ. Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of in vivo imaging. Theranostics. 2022;12(17):7509–31.
Comments (0)