Targeting strategies with lipid vectors for nucleic acid supplementation therapy in Fabry disease: a systematic review

Turkmen K, Baloglu I. Fabry disease: where are we now? Int Urol Nephrol. 2020;52(11):2113–22. https://doi.org/10.1007/s11255-020-02546-3.

Article  PubMed  CAS  Google Scholar 

Tuttolomondo A, Pecoraro R, Simonetta I, Miceli S, Pinto A, Licata G. Anderson-Fabry Disease: a Multiorgan Disease. Curr Pharm Des. 2013;19(33):5974–96.

Article  PubMed  CAS  Google Scholar 

Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;1–49. https://doi.org/10.1186/1750-1172-5-30.

Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P. Life expectancy and cause of death in males and females with fabry disease: findings from the Fabry Registry. Genet Med. 2009;11(11):790–6. https://doi.org/10.1097/GIM.0b013e3181bb05bb.

Article  PubMed  Google Scholar 

Azevedo O, Gago MF, Miltenberger-Miltenyi G, Sousa N, Cunha D. Fabry disease therapy: state-of-the-art and current challenges. Int J Mol Sci. 2021;22(1):206. https://doi.org/10.3390/ijms22010206.

Article  CAS  Google Scholar 

McCafferty EH, Scott LJ, Migalastat. A review in Fabry Disease. Drugs. 2019;79(5):543–54. https://doi.org/10.1007/s40265-019-01090-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for fabry disease: Progress, challenges, and outlooks on gene-editing. Mol Genet Metab. 2021;134(1–2):117–31. https://doi.org/10.1016/j.ymgme.2021.07.006.

Article  PubMed  CAS  Google Scholar 

Byrne BJ, Falk DJ, Clément N, Mah CS. Gene therapy approaches for lysosomal storage disease: next-generation treatment. Hum Gene Ther. 2012;23(8):808–15. https://doi.org/10.1089/hum.2012.140.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yasuda M, Huston MW, Pagant S, Gan L, Martin SS, Sproul S, et al. AAV2/6 Gene Therapy in a murine model of Fabry Disease results in supraphysiological enzyme activity and effective substrate reduction. Mol Ther Methods Clin Dev. 2020;18:607–19. https://doi.org/10.1016/j.omtm.2020.07.002.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jeyakumar JM, Kia A, Tam LCS, McIntosh J, Spiewak J, Mills K, et al. Preclinical evaluation of FLT190, a liver-directed AAV gene therapy for fabry disease. Gene Ther. 2023;30(6):487–502. https://doi.org/10.1038/s41434-022-00381-y.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Malaviya M, Shiroya M. Systemic gene delivery using lipid envelope systems and its potential in overcoming challenges. Int J Pharm Drug Anal. 2021;9:46–55.

CAS  Google Scholar 

Nayerossadat N, Ali P, Maedeh T. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27. https://doi.org/10.4103/2277-9175.98152.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines. 2021;9(4):359. https://doi.org/10.3390/vaccines9040359.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khalil IA, Sato Y, Harashima H. Recent advances in the targeting of systemically administered non-viral gene delivery systems. Expert Opin Drug Deliv. 2019;16(10):1037–50. https://doi.org/10.1080/17425247.2019.1656196.

Article  PubMed  CAS  Google Scholar 

Luiz MT, Dutra JAP, Tofani LB, de Araújo JTC, Di Filippo LD, Marchetti JM, et al. Targeted liposomes: a nonviral gene delivery system for Cancer Therapy. Pharmaceutics. 2022;14(4):821. https://doi.org/10.3390/pharmaceutics14040821.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Santana-Armas ML, Tros de Ilarduya C. Strategies for cancer gene-delivery improvement by non-viral vectors. Int J Pharm. 2021;596:120291. https://doi.org/10.1016/j.ijpharm.2021.120291.

Article  PubMed  CAS  Google Scholar 

Zhuo H, Zheng B, Liu J, Huang Y, Wang H, Zheng D, et al. Efficient targeted tumor imaging and secreted endostatin gene delivery by anti-CD105 immunoliposomes. J Exp Clin Cancer Res. 2018;37(1):42. https://doi.org/10.1186/s13046-018-0712-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ho SY, Chen PR, Chen CH, Tsai NM, Lin YH, Lin CS, et al. Lipoplex-based targeted gene therapy for the suppression of tumours with VEGFR expression by producing anti-angiogenic molecules. J Nanobiotechnol. 2020;18(1):58. https://doi.org/10.1186/s12951-020-00610-9.

Article  Google Scholar 

Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release. 2011;153(2):141–8. https://doi.org/10.1016/j.jconrel.2011.03.012.

Article  PubMed  CAS  Google Scholar 

Kunath K, Von Harpe A, Fischer D, Kissel T. Galactose-PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J Control Release. 2003;88(1):159–72. https://doi.org/10.1016/S0168-3659(02)00458-3.

Article  PubMed  CAS  Google Scholar 

Menon I, Zaroudi M, Zhang Y, Aisenbrey E, Hui L. Fabrication of active targeting lipid nanoparticles: challenges and perspectives. Mater Today Adv. 2022;16:100299. https://doi.org/10.1016/j.mtadv.2022.100299.

Article  CAS  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

Article  PubMed  PubMed Central  Google Scholar 

van Loveren C, Aartman IH. [The PICO (patient-Intervention-Comparison-Outcome) question]. Nederlands Tijdschrift voor Tandheelkunde. 2007;114:172–8.

PubMed  Google Scholar 

du Sert NP, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: explanation and elaboration for the arrive guidelines 2.0. PLoS Biol. 2020;18(7):e3000411. https://doi.org/10.1371/journal.pbio.3000411.

Article  CAS  Google Scholar 

García-González M, Muñoz F, González-Cantalapiedra A, López-Peña M, Saulacic N. Systematic review and quality evaluation using arrive 2.0 guidelines on animal models used for periosteal distraction osteogenesis. Animals. 2021;11(5):1233. https://doi.org/10.3390/ani11051233.

Article  PubMed  PubMed Central  Google Scholar 

Delgado-Ruiz RA, Calvo‐Guirado JL, Romanos GE. Critical size defects for bone regeneration experiments in rabbit calvariae: systematic review and quality evaluation using ARRIVE guidelines. Clin Oral Implants Res. 2015;26(8):915–30. https://doi.org/10.1111/clr.12406.

Article  PubMed  Google Scholar 

Zhang H, Kusunose J, Kheirolomoom A, Seo JW, Qi J, Watson KD, et al. Dynamic imaging of arginine-rich heart-targeted vehicles in a mouse model. Biomaterials. 2008;29(12):1976–88. https://doi.org/10.1016/j.biomaterials.2007.12.033.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang H, Li N, Sirish P, Mahakian L, Ingham E, Curry FR, et al. The cargo of CRPPR-conjugated liposomes crosses the intact murine cardiac endothelium. J Control Release. 2012;163(1):10–7. https://doi.org/10.1016/j.jconrel.2012.06.038.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao H, Bao XJ, Wang RZ, Li GL, Gao J, Ma SH, et al. Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. Hum Gene Ther. 2011;22(2):207–15. https://doi.org/10.1089/hum.2010.111.

Comments (0)

No login
gif