Yadav I, Purohit SD, Singh H, Bhushan S, Yadav MK, Velpandian T, et al. Vitreous substitutes: an overview of the properties, importance, and development. J Biomed Mater Res B Appl Biomater. 2021;109:1156–76. https://doi.org/10.1002/jbm.b.34778.
Article PubMed CAS Google Scholar
Kleinberg TT, Tzekov RT, Stein L, Ravi N, Kaushal S. Vitreous substitutes: a Comprehensive Review. Surv Ophthalmol. 2011;56:300–23. https://doi.org/10.1016/j.survophthal.2010.09.001.
Chirila TV, Hong Y. The vitreous humor. Handbook of Biomaterial Properties. Boston, MA: Springer US; 1998. pp. 125–31. https://doi.org/10.1007/978-1-4615-5801-9_12.
Silva AF, Alves MA, Oliveira MSN. Rheological behaviour of vitreous humour. Rheol Acta. 2017;56:377–86. https://doi.org/10.1007/s00397-017-0997-0.
Donati S, Caprani SM, Airaghi G, Vinciguerra R, Bartalena L, Testa F, et al. Vitreous substitutes: the Present and the future. Biomed Res Int. 2014;2014:1–12. https://doi.org/10.1155/2014/351804.
Swindle KE, Ravi N. Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol. 2007;2:255–65. https://doi.org/10.1586/17469899.2.2.255.
Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye. 2008;22:1214–22. https://doi.org/10.1038/eye.2008.21.
Mishra D, Gade S, Glover K, Sheshala R, Singh TRR. Vitreous humor: composition, characteristics and implication on Intravitreal Drug Delivery. Curr Eye Res. 2022;48:208–18. https://doi.org/10.1080/02713683.2022.2119254.
Article PubMed CAS Google Scholar
Nickerson CS, Karageozian HL, Park J, Kornfield JA. Internal tension: a novel hypothesis concerning the Mechanical properties of the vitreous humor. Macromol Symp. 2005;227:183–90. https://doi.org/10.1002/masy.200550918.
Santhanam S, Liang J, Struckhoff J, Hamilton PD, Ravi N. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes. Acta Biomater. 2016;43:327–37. https://doi.org/10.1016/j.actbio.2016.07.051.
Article PubMed PubMed Central CAS Google Scholar
Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology. 1992;29:521–33. https://doi.org/10.3233/BIR-1992-295-612.
Article PubMed CAS Google Scholar
Baino F. Towards an ideal biomaterial for vitreous replacement: historical overview and future trends. Acta Biomater. 2011;7:921–35. https://doi.org/10.1016/j.actbio.2010.10.030.
Article PubMed CAS Google Scholar
Vaziri K, Schwartz S, Kishor K, Flynn H. Tamponade in the surgical management of retinal detachment. Clin Ophthalmol. 2016;10:471. https://doi.org/10.2147/OPTH.S98529.
Article PubMed PubMed Central Google Scholar
Murtagh PJ, Stephenson KA, Rhatigan M, McElnea EM, Connell PP, Keegan DJ. Rhegmatogenous retinal detachments: primary reattachment rates and visual outcomes over a 4-year period. Ir J Med Sci (1971 -). 2020;189:355–63. https://doi.org/10.1007/s11845-019-02084-7.
Barca F, Caporossi T, Rizzo S. Silicone oil: different physical proprieties and clinical applications. Biomed Res Int. 2014;2014:1–7. https://doi.org/10.1155/2014/502143.
Kim R, Baumal C. Anterior segment complications related to vitreous substitutes. Ophthalmol Clin North Am. 2004;17:569–76. https://doi.org/10.1016/j.ohc.2004.06.011.
Eibenberger K, Sacu S, Rezar-Dreindl S, Schmidt-Erfurth U, Georgopoulos M. Silicone oil tamponade in Rhegmatogenous Retinal detachment: functional and morphological results. Curr Eye Res. 2020;45:38–45. https://doi.org/10.1080/02713683.2019.1652917.
Januschowski K, Schnichels S, Hurst J, Hohenadl C, Reither C, Rickmann A, et al. Ex vivo biophysical characterization of a hydrogel-based artificial vitreous substitute. PLoS ONE. 2019;14:e0209217. https://doi.org/10.1371/journal.pone.0209217.
Article PubMed PubMed Central CAS Google Scholar
Raia NR, Jia D, Ghezzi CE, Muthukumar M, Kaplan DL. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials. 2020;233:119729. https://doi.org/10.1016/j.biomaterials.2019.119729.
Article PubMed CAS Google Scholar
Schnichels S, Schneider N, Hohenadl C, Hurst J, Schatz A, Januschowski K, et al. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment. PLoS ONE. 2017;12:e0172895. https://doi.org/10.1371/journal.pone.0172895.
Article PubMed PubMed Central CAS Google Scholar
Suri S, Banerjee R. In vitro evaluation of in situ gels as short term vitreous substitutes. J Biomed Mater Res A. 2006;79:650–64. https://doi.org/10.1002/jbm.a.30917.
Article PubMed CAS Google Scholar
Jiang X, Peng Y, Yang C, Liu W, Han B. The feasibility study of an in situ marine polysaccharide-based hydrogel as the vitreous substitute. J Biomed Mater Res A. 2018;106:1997–2006. https://doi.org/10.1002/jbm.a.36403.
Article PubMed CAS Google Scholar
Yang H, Wang R, Gu Q, Zhang X. Feasibility study of Chitosan as intravitreous tamponade material. Graefe’s Archive Clin Experimental Ophthalmol. 2008;246:1097–105. https://doi.org/10.1007/s00417-008-0813-8.
Katagiri Y, Iwasaki T, Ishikawa T, Yamakawa N, Suzuki H, Usui M. Application of Thermo-setting gel as Artificial Vitreous. Jpn J Ophthalmol. 2005;49:491–6. https://doi.org/10.1007/s10384-005-0255-3.
Fernandez-Vigo J, Sabugal JF, Diaz Rey A, Concheiro A, Martinez R. Molecular weight dependence of the pharmacokinetic of hydroxypropyl methylcellulose in the vitreous. J Ocul Pharmacol. 1990;6:137–42. https://doi.org/10.1089/jop.1990.6.137.
Article PubMed CAS Google Scholar
Foster WJ, Aliyar HA, Hamilton P, Ravi N. Internal osmotic pressure as a mechanism of Retinal attachment in a vitreous substitute. J Bioact Compat Polym. 2006;21:221–35. https://doi.org/10.1177/0883911506064368.
Davis JT, Hamilton PD, Ravi N. Poly(acrylamide co-acrylic acid) for use as an in situ gelling vitreous substitute. J Bioact Compat Polym. 2017;32:528–41. https://doi.org/10.1177/0883911516688482.
Maruoka S, Matsuura T, Kawasaki K, Okamoto M, Yoshiaki H, Kodama M, et al. Biocompatibility of Polyvinylalcohol Gel as a vitreous substitute. Curr Eye Res. 2006;31:599–606. https://doi.org/10.1080/02713680600813854.
Article PubMed CAS Google Scholar
Leone G, Consumi M, Aggravi M, Donati A, Lamponi S, Magnani A. PVA/STMP based hydrogels as potential substitutes of human vitreous. J Mater Sci Mater Med. 2010;21:2491–500. https://doi.org/10.1007/s10856-010-4092-7.
Article PubMed CAS Google Scholar
Lamponi S, Leone G, Consumi M, Greco G, Magnani A. In Vitro Biocompatibility of New PVA-Based hydrogels as vitreous body substitutes. J Biomater Sci Polym Ed. 2012;23:555–75. https://doi.org/10.1163/092050611X554499.
Comments (0)