In vivo evaluation of a Nano-enabled therapeutic vitreous substitute for the precise delivery of triamcinolone to the posterior segment of the eye

Yadav I, Purohit SD, Singh H, Bhushan S, Yadav MK, Velpandian T, et al. Vitreous substitutes: an overview of the properties, importance, and development. J Biomed Mater Res B Appl Biomater. 2021;109:1156–76. https://doi.org/10.1002/jbm.b.34778.

Article  PubMed  CAS  Google Scholar 

Kleinberg TT, Tzekov RT, Stein L, Ravi N, Kaushal S. Vitreous substitutes: a Comprehensive Review. Surv Ophthalmol. 2011;56:300–23. https://doi.org/10.1016/j.survophthal.2010.09.001.

Article  PubMed  Google Scholar 

Chirila TV, Hong Y. The vitreous humor. Handbook of Biomaterial Properties. Boston, MA: Springer US; 1998. pp. 125–31. https://doi.org/10.1007/978-1-4615-5801-9_12.

Book  Google Scholar 

Silva AF, Alves MA, Oliveira MSN. Rheological behaviour of vitreous humour. Rheol Acta. 2017;56:377–86. https://doi.org/10.1007/s00397-017-0997-0.

Article  CAS  Google Scholar 

Donati S, Caprani SM, Airaghi G, Vinciguerra R, Bartalena L, Testa F, et al. Vitreous substitutes: the Present and the future. Biomed Res Int. 2014;2014:1–12. https://doi.org/10.1155/2014/351804.

Article  CAS  Google Scholar 

Swindle KE, Ravi N. Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol. 2007;2:255–65. https://doi.org/10.1586/17469899.2.2.255.

Article  Google Scholar 

Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye. 2008;22:1214–22. https://doi.org/10.1038/eye.2008.21.

Article  PubMed  Google Scholar 

Mishra D, Gade S, Glover K, Sheshala R, Singh TRR. Vitreous humor: composition, characteristics and implication on Intravitreal Drug Delivery. Curr Eye Res. 2022;48:208–18. https://doi.org/10.1080/02713683.2022.2119254.

Article  PubMed  CAS  Google Scholar 

Nickerson CS, Karageozian HL, Park J, Kornfield JA. Internal tension: a novel hypothesis concerning the Mechanical properties of the vitreous humor. Macromol Symp. 2005;227:183–90. https://doi.org/10.1002/masy.200550918.

Article  CAS  Google Scholar 

Santhanam S, Liang J, Struckhoff J, Hamilton PD, Ravi N. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes. Acta Biomater. 2016;43:327–37. https://doi.org/10.1016/j.actbio.2016.07.051.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology. 1992;29:521–33. https://doi.org/10.3233/BIR-1992-295-612.

Article  PubMed  CAS  Google Scholar 

Baino F. Towards an ideal biomaterial for vitreous replacement: historical overview and future trends. Acta Biomater. 2011;7:921–35. https://doi.org/10.1016/j.actbio.2010.10.030.

Article  PubMed  CAS  Google Scholar 

Vaziri K, Schwartz S, Kishor K, Flynn H. Tamponade in the surgical management of retinal detachment. Clin Ophthalmol. 2016;10:471. https://doi.org/10.2147/OPTH.S98529.

Article  PubMed  PubMed Central  Google Scholar 

Murtagh PJ, Stephenson KA, Rhatigan M, McElnea EM, Connell PP, Keegan DJ. Rhegmatogenous retinal detachments: primary reattachment rates and visual outcomes over a 4-year period. Ir J Med Sci (1971 -). 2020;189:355–63. https://doi.org/10.1007/s11845-019-02084-7.

Article  Google Scholar 

Barca F, Caporossi T, Rizzo S. Silicone oil: different physical proprieties and clinical applications. Biomed Res Int. 2014;2014:1–7. https://doi.org/10.1155/2014/502143.

Article  Google Scholar 

Kim R, Baumal C. Anterior segment complications related to vitreous substitutes. Ophthalmol Clin North Am. 2004;17:569–76. https://doi.org/10.1016/j.ohc.2004.06.011.

Article  PubMed  Google Scholar 

Eibenberger K, Sacu S, Rezar-Dreindl S, Schmidt-Erfurth U, Georgopoulos M. Silicone oil tamponade in Rhegmatogenous Retinal detachment: functional and morphological results. Curr Eye Res. 2020;45:38–45. https://doi.org/10.1080/02713683.2019.1652917.

Article  PubMed  Google Scholar 

Januschowski K, Schnichels S, Hurst J, Hohenadl C, Reither C, Rickmann A, et al. Ex vivo biophysical characterization of a hydrogel-based artificial vitreous substitute. PLoS ONE. 2019;14:e0209217. https://doi.org/10.1371/journal.pone.0209217.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Raia NR, Jia D, Ghezzi CE, Muthukumar M, Kaplan DL. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials. 2020;233:119729. https://doi.org/10.1016/j.biomaterials.2019.119729.

Article  PubMed  CAS  Google Scholar 

Schnichels S, Schneider N, Hohenadl C, Hurst J, Schatz A, Januschowski K, et al. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment. PLoS ONE. 2017;12:e0172895. https://doi.org/10.1371/journal.pone.0172895.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Suri S, Banerjee R. In vitro evaluation of in situ gels as short term vitreous substitutes. J Biomed Mater Res A. 2006;79:650–64. https://doi.org/10.1002/jbm.a.30917.

Article  PubMed  CAS  Google Scholar 

Jiang X, Peng Y, Yang C, Liu W, Han B. The feasibility study of an in situ marine polysaccharide-based hydrogel as the vitreous substitute. J Biomed Mater Res A. 2018;106:1997–2006. https://doi.org/10.1002/jbm.a.36403.

Article  PubMed  CAS  Google Scholar 

Yang H, Wang R, Gu Q, Zhang X. Feasibility study of Chitosan as intravitreous tamponade material. Graefe’s Archive Clin Experimental Ophthalmol. 2008;246:1097–105. https://doi.org/10.1007/s00417-008-0813-8.

Article  CAS  Google Scholar 

Katagiri Y, Iwasaki T, Ishikawa T, Yamakawa N, Suzuki H, Usui M. Application of Thermo-setting gel as Artificial Vitreous. Jpn J Ophthalmol. 2005;49:491–6. https://doi.org/10.1007/s10384-005-0255-3.

Article  PubMed  Google Scholar 

Fernandez-Vigo J, Sabugal JF, Diaz Rey A, Concheiro A, Martinez R. Molecular weight dependence of the pharmacokinetic of hydroxypropyl methylcellulose in the vitreous. J Ocul Pharmacol. 1990;6:137–42. https://doi.org/10.1089/jop.1990.6.137.

Article  PubMed  CAS  Google Scholar 

Foster WJ, Aliyar HA, Hamilton P, Ravi N. Internal osmotic pressure as a mechanism of Retinal attachment in a vitreous substitute. J Bioact Compat Polym. 2006;21:221–35. https://doi.org/10.1177/0883911506064368.

Article  CAS  Google Scholar 

Davis JT, Hamilton PD, Ravi N. Poly(acrylamide co-acrylic acid) for use as an in situ gelling vitreous substitute. J Bioact Compat Polym. 2017;32:528–41. https://doi.org/10.1177/0883911516688482.

Article  CAS  Google Scholar 

Maruoka S, Matsuura T, Kawasaki K, Okamoto M, Yoshiaki H, Kodama M, et al. Biocompatibility of Polyvinylalcohol Gel as a vitreous substitute. Curr Eye Res. 2006;31:599–606. https://doi.org/10.1080/02713680600813854.

Article  PubMed  CAS  Google Scholar 

Leone G, Consumi M, Aggravi M, Donati A, Lamponi S, Magnani A. PVA/STMP based hydrogels as potential substitutes of human vitreous. J Mater Sci Mater Med. 2010;21:2491–500. https://doi.org/10.1007/s10856-010-4092-7.

Article  PubMed  CAS  Google Scholar 

Lamponi S, Leone G, Consumi M, Greco G, Magnani A. In Vitro Biocompatibility of New PVA-Based hydrogels as vitreous body substitutes. J Biomater Sci Polym Ed. 2012;23:555–75. https://doi.org/10.1163/092050611X554499.

Article  PubMed  CAS 

Comments (0)

No login
gif
Back To Top