Okekunle AP, Li Y, Liu L, Du S, Wu X, Chen Y, et al. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res Clin Pract. 2017;132:45–58. https://doi.org/10.1016/j.diabres.2017.07.023.
Article CAS PubMed Google Scholar
Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37(1):1–17. https://doi.org/10.1007/s00726-009-0269-0.
Article CAS PubMed Google Scholar
Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients. 2019;11(6). https://doi.org/10.3390/nu11061356.
Imenshahidi M, Hossenzadeh H. Effects of glycine on metabolic syndrome components: a review. J Endocrinol Invest. 2022;45(5):927–39. https://doi.org/10.1007/s40618-021-01720-3.
Article CAS PubMed Google Scholar
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther. 2023;8(1):345. https://doi.org/10.1038/s41392-023-01569-3.
Article PubMed PubMed Central Google Scholar
Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013;45(3):463–77. https://doi.org/10.1007/s00726-013-1493-1.
Article CAS PubMed Google Scholar
Aguayo-Ceron KA, Sanchez-Munoz F, Gutierrez-Rojas RA, Acevedo-Villavicencio LN, Flores-Zarate AV, Huang F, et al. Glycine: the smallest anti-inflammatory micronutrient. Int J Mol Sci. 2023;24(14). https://doi.org/10.3390/ijms241411236.
Lin C, Sun Z, Mei Z, Zeng H, Zhao M, Hu J, et al. The causal associations of circulating amino acids with blood pressure: a mendelian randomization study. BMC Med. 2022;20(1):414. https://doi.org/10.1186/s12916-022-02612-w.
Article CAS PubMed PubMed Central Google Scholar
Venkatesh R, Srinivasan K, Singh SA. Effect of arginine:lysine and glycine:methionine intake ratios on dyslipidemia and selected biomarkers implicated in cardiovascular disease: a study with hypercholesterolemic rats. Biomed Pharmacother. 2017;91:408–14. https://doi.org/10.1016/j.biopha.2017.04.072.
Article CAS PubMed Google Scholar
Yu B, Li AH, Muzny D, Veeraraghavan N, de Vries PS, Bis JC, et al. Association of Rare Loss-Of-Function alleles in HAL, serum histidine: levels and Incident Coronary Heart Disease. Circ Cardiovasc Genet. 2015;8(2):351–5. https://doi.org/10.1161/circgenetics.114.000697.
Article CAS PubMed PubMed Central Google Scholar
Liang H, Xu P, Xu G, Zhang L, Huang D, Ren M, Zhang L. Histidine Deficiency inhibits intestinal antioxidant capacity and induces intestinal endoplasmic-reticulum stress, inflammatory response, apoptosis, and Necroptosis in Largemouth Bass (Micropterus salmoides). Antioxidants. 2022;11(12):2399.
Article CAS PubMed PubMed Central Google Scholar
Moro J, Tome D, Schmidely P, Demersay TC, Azzout-Marniche D. Histidine: a systematic review on metabolism and physiological effects in Human and different animal species. Nutrients. 2020;12(5). https://doi.org/10.3390/nu12051414.
Holecek M. Histidine in Health and Disease: metabolism, physiological importance, and use as a supplement. Nutrients. 2020;12(3). https://doi.org/10.3390/nu12030848.
DiNicolantonio JJ, McCarty MF, JH OK. Role of dietary histidine in the prevention of obesity and metabolic syndrome. Open Heart. 2018;5(2):e000676. https://doi.org/10.1136/openhrt-2017-000676.
Article PubMed PubMed Central Google Scholar
Jauhiainen R, Vangipurapu J, Laakso A, Kuulasmaa T, Kuusisto J, Laakso M. The Association of 9 amino acids with Cardiovascular events in Finnish men in a 12-Year follow-up study. J Clin Endocrinol Metab. 2021;106(12):3448–54. https://doi.org/10.1210/clinem/dgab562.
Article PubMed PubMed Central Google Scholar
Toba H, Nakamori A, Tanaka Y, Yukiya R, Tatsuoka K, Narutaki M, et al. Oral L-histidine exerts antihypertensive effects via central histamine H3 receptors and decreases nitric oxide content in the rostral ventrolateral medulla in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2010;37(1):62–8. https://doi.org/10.1111/j.1440-1681.2009.05227.x.
Article CAS PubMed Google Scholar
Menon K, Marquina C, Hoj P, Liew D, Mousa A, de Courten B. Carnosine and histidine-containing dipeptides improve dyslipidemia: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2020;78(11):939–51. https://doi.org/10.1093/nutrit/nuaa022.
Wang X, Wang Y, Xu W, Lan L, Li Y, Wang L, et al. Dietary isoflavones intake is inversely associated with non-alcoholic fatty liver disease, hyperlipidaemia and hypertension. Int J Food Sci Nutr. 2022;73(1):60–70. https://doi.org/10.1080/09637486.2021.1910630.
Article CAS PubMed Google Scholar
Chen Z, Lin F, Ye X, Dong Y, Hu L, Huang A. Simultaneous determination of five essential amino acids in plasma of hyperlipidemic subjects by UPLC-MS/MS. Lipids Health Dis. 2020;19(1):52. https://doi.org/10.1186/s12944-020-01216-8.
Article CAS PubMed PubMed Central Google Scholar
Belete AK, Kassaw AT, Yirsaw BG, Taye BA, Ambaw SN, Mekonnen BA, Sendekie AK. Prevalence of hypercholesterolemia and awareness of risk factors, Prevention and Management among Adults Visiting Referral Hospital in Ethiopia. Vasc Health Risk Manag. 2023;19:181–91. https://doi.org/10.2147/vhrm.S408703.
Article CAS PubMed PubMed Central Google Scholar
Vasdev S, Stuckless J. Antihypertensive effects of dietary protein and its mechanism. Int J Angiol. 2010;19(1):e7–20. https://doi.org/10.1055/s-0031-1278362.
Article PubMed PubMed Central Google Scholar
Wang H, He S, Wang J, An Y, Wang X, Li G, et al. Does high-normal blood pressure lead to excess cardiovascular disease events and deaths in Chinese people? A post-hoc analysis of the 30-year follow-up of the Da Qing IGT and Diabetes Study. Diabetes Obes Metab. 2024;26(3):871–7. https://doi.org/10.1111/dom.15379.
Article CAS PubMed Google Scholar
Li YC, Li Y, Liu LY, Chen Y, Zi TQ, Du SS, et al. The ratio of Dietary branched-chain amino acids is Associated with a lower prevalence of obesity in Young Northern Chinese adults: an internet-based cross-sectional study. Nutrients. 2015;7(11):9573–89. https://doi.org/10.3390/nu7115486.
Article CAS PubMed PubMed Central Google Scholar
Guo P, Zhu H, Pan H, Feng R, Chen Y, Wang Y, et al. Dose-response relationships between dairy intake and chronic metabolic diseases in a Chinese population. J Diabetes. 2019;11(11):846–56. https://doi.org/10.1111/1753-0407.12921.
Article CAS PubMed Google Scholar
Teunissen-Beekman KF, van Baak MA. The role of dietary protein in blood pressure regulation. Curr Opin Lipidol. 2013;24(1):65–70. https://doi.org/10.1097/MOL.0b013e32835b4645.
Article CAS PubMed Google Scholar
Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3, et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA. 2005;294(19):2455–64. https://doi.org/10.1001/jama.294.19.2455.
Article CAS PubMed Google Scholar
Feng RN, Du SS, Chen Y, Li Z, Zhang YF, Sun CH, Jiang YS. An internet-based food frequency questionnaire for a large Chinese population. Asia Pac J Clin Nutr. 2016;25(4):841–8. https://doi.org/10.6133/apjcn.092015.26.
Ekman A, Litton JE. New times, new needs; e-epidemiology. Eur J Epidemiol. 2007;22(5):285–92. https://doi.org/10.1007/s10654-007-9119-0.
Uhlig CE, Seitz B, Eter N, Promesberger J, Busse H. Efficiencies of internet-based digital and paper-based scientific surveys and the estimated costs and time for different-sized cohorts. PLoS ONE. 2014;9(10):e108441. https://doi.org/10.1371/journal.pone.0108441.
Comments (0)