The inverse associations of glycine and histidine in diet with hyperlipidemia and hypertension

Okekunle AP, Li Y, Liu L, Du S, Wu X, Chen Y, et al. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res Clin Pract. 2017;132:45–58. https://doi.org/10.1016/j.diabres.2017.07.023.

Article  CAS  PubMed  Google Scholar 

Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37(1):1–17. https://doi.org/10.1007/s00726-009-0269-0.

Article  CAS  PubMed  Google Scholar 

Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients. 2019;11(6). https://doi.org/10.3390/nu11061356.

Imenshahidi M, Hossenzadeh H. Effects of glycine on metabolic syndrome components: a review. J Endocrinol Invest. 2022;45(5):927–39. https://doi.org/10.1007/s40618-021-01720-3.

Article  CAS  PubMed  Google Scholar 

Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther. 2023;8(1):345. https://doi.org/10.1038/s41392-023-01569-3.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013;45(3):463–77. https://doi.org/10.1007/s00726-013-1493-1.

Article  CAS  PubMed  Google Scholar 

Aguayo-Ceron KA, Sanchez-Munoz F, Gutierrez-Rojas RA, Acevedo-Villavicencio LN, Flores-Zarate AV, Huang F, et al. Glycine: the smallest anti-inflammatory micronutrient. Int J Mol Sci. 2023;24(14). https://doi.org/10.3390/ijms241411236.

Lin C, Sun Z, Mei Z, Zeng H, Zhao M, Hu J, et al. The causal associations of circulating amino acids with blood pressure: a mendelian randomization study. BMC Med. 2022;20(1):414. https://doi.org/10.1186/s12916-022-02612-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venkatesh R, Srinivasan K, Singh SA. Effect of arginine:lysine and glycine:methionine intake ratios on dyslipidemia and selected biomarkers implicated in cardiovascular disease: a study with hypercholesterolemic rats. Biomed Pharmacother. 2017;91:408–14. https://doi.org/10.1016/j.biopha.2017.04.072.

Article  CAS  PubMed  Google Scholar 

Yu B, Li AH, Muzny D, Veeraraghavan N, de Vries PS, Bis JC, et al. Association of Rare Loss-Of-Function alleles in HAL, serum histidine: levels and Incident Coronary Heart Disease. Circ Cardiovasc Genet. 2015;8(2):351–5. https://doi.org/10.1161/circgenetics.114.000697.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang H, Xu P, Xu G, Zhang L, Huang D, Ren M, Zhang L. Histidine Deficiency inhibits intestinal antioxidant capacity and induces intestinal endoplasmic-reticulum stress, inflammatory response, apoptosis, and Necroptosis in Largemouth Bass (Micropterus salmoides). Antioxidants. 2022;11(12):2399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moro J, Tome D, Schmidely P, Demersay TC, Azzout-Marniche D. Histidine: a systematic review on metabolism and physiological effects in Human and different animal species. Nutrients. 2020;12(5). https://doi.org/10.3390/nu12051414.

Holecek M. Histidine in Health and Disease: metabolism, physiological importance, and use as a supplement. Nutrients. 2020;12(3). https://doi.org/10.3390/nu12030848.

DiNicolantonio JJ, McCarty MF, JH OK. Role of dietary histidine in the prevention of obesity and metabolic syndrome. Open Heart. 2018;5(2):e000676. https://doi.org/10.1136/openhrt-2017-000676.

Article  PubMed  PubMed Central  Google Scholar 

Jauhiainen R, Vangipurapu J, Laakso A, Kuulasmaa T, Kuusisto J, Laakso M. The Association of 9 amino acids with Cardiovascular events in Finnish men in a 12-Year follow-up study. J Clin Endocrinol Metab. 2021;106(12):3448–54. https://doi.org/10.1210/clinem/dgab562.

Article  PubMed  PubMed Central  Google Scholar 

Toba H, Nakamori A, Tanaka Y, Yukiya R, Tatsuoka K, Narutaki M, et al. Oral L-histidine exerts antihypertensive effects via central histamine H3 receptors and decreases nitric oxide content in the rostral ventrolateral medulla in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2010;37(1):62–8. https://doi.org/10.1111/j.1440-1681.2009.05227.x.

Article  CAS  PubMed  Google Scholar 

Menon K, Marquina C, Hoj P, Liew D, Mousa A, de Courten B. Carnosine and histidine-containing dipeptides improve dyslipidemia: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2020;78(11):939–51. https://doi.org/10.1093/nutrit/nuaa022.

Article  PubMed  Google Scholar 

Wang X, Wang Y, Xu W, Lan L, Li Y, Wang L, et al. Dietary isoflavones intake is inversely associated with non-alcoholic fatty liver disease, hyperlipidaemia and hypertension. Int J Food Sci Nutr. 2022;73(1):60–70. https://doi.org/10.1080/09637486.2021.1910630.

Article  CAS  PubMed  Google Scholar 

Chen Z, Lin F, Ye X, Dong Y, Hu L, Huang A. Simultaneous determination of five essential amino acids in plasma of hyperlipidemic subjects by UPLC-MS/MS. Lipids Health Dis. 2020;19(1):52. https://doi.org/10.1186/s12944-020-01216-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belete AK, Kassaw AT, Yirsaw BG, Taye BA, Ambaw SN, Mekonnen BA, Sendekie AK. Prevalence of hypercholesterolemia and awareness of risk factors, Prevention and Management among Adults Visiting Referral Hospital in Ethiopia. Vasc Health Risk Manag. 2023;19:181–91. https://doi.org/10.2147/vhrm.S408703.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vasdev S, Stuckless J. Antihypertensive effects of dietary protein and its mechanism. Int J Angiol. 2010;19(1):e7–20. https://doi.org/10.1055/s-0031-1278362.

Article  PubMed  PubMed Central  Google Scholar 

Wang H, He S, Wang J, An Y, Wang X, Li G, et al. Does high-normal blood pressure lead to excess cardiovascular disease events and deaths in Chinese people? A post-hoc analysis of the 30-year follow-up of the Da Qing IGT and Diabetes Study. Diabetes Obes Metab. 2024;26(3):871–7. https://doi.org/10.1111/dom.15379.

Article  CAS  PubMed  Google Scholar 

Li YC, Li Y, Liu LY, Chen Y, Zi TQ, Du SS, et al. The ratio of Dietary branched-chain amino acids is Associated with a lower prevalence of obesity in Young Northern Chinese adults: an internet-based cross-sectional study. Nutrients. 2015;7(11):9573–89. https://doi.org/10.3390/nu7115486.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo P, Zhu H, Pan H, Feng R, Chen Y, Wang Y, et al. Dose-response relationships between dairy intake and chronic metabolic diseases in a Chinese population. J Diabetes. 2019;11(11):846–56. https://doi.org/10.1111/1753-0407.12921.

Article  CAS  PubMed  Google Scholar 

Teunissen-Beekman KF, van Baak MA. The role of dietary protein in blood pressure regulation. Curr Opin Lipidol. 2013;24(1):65–70. https://doi.org/10.1097/MOL.0b013e32835b4645.

Article  CAS  PubMed  Google Scholar 

Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3, et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA. 2005;294(19):2455–64. https://doi.org/10.1001/jama.294.19.2455.

Article  CAS  PubMed  Google Scholar 

Feng RN, Du SS, Chen Y, Li Z, Zhang YF, Sun CH, Jiang YS. An internet-based food frequency questionnaire for a large Chinese population. Asia Pac J Clin Nutr. 2016;25(4):841–8. https://doi.org/10.6133/apjcn.092015.26.

Article  PubMed  Google Scholar 

Ekman A, Litton JE. New times, new needs; e-epidemiology. Eur J Epidemiol. 2007;22(5):285–92. https://doi.org/10.1007/s10654-007-9119-0.

Article  PubMed  Google Scholar 

Uhlig CE, Seitz B, Eter N, Promesberger J, Busse H. Efficiencies of internet-based digital and paper-based scientific surveys and the estimated costs and time for different-sized cohorts. PLoS ONE. 2014;9(10):e108441. https://doi.org/10.1371/journal.pone.0108441.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif