Candida boidinii isolates from olive curation water: a promising platform for methanol-based biomanufacturing

Abeln F, Chuck CJ (2021) The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 20:1–31. https://doi.org/10.1186/s12934-021-01712-1

Article  CAS  Google Scholar 

Arora N, Yen HW, Philippidis GP (2020) Harnessing the power of mutagenesis and adaptive laboratory evolution for high lipid production by oleaginous microalgae and yeasts. Sustain (Switzerland). https://doi.org/10.3390/su12125125

Article  Google Scholar 

Arous F, Azabou S, Triantaphyllidou IE, Aggelis G, Jaouani A, Nasri M, Mechichi T (2017) Newly isolated yeasts from Tunisian microhabitats: lipid accumulation and fatty acid composition. Eng Life Sci 17:226–236. https://doi.org/10.1002/elsc.201500156

Article  CAS  PubMed  Google Scholar 

Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A (2008) Role of yeasts in table olive production. Int J Food Microbiol 128:189–196. https://doi.org/10.1016/j.ijfoodmicro.2008.08.018

Article  CAS  PubMed  Google Scholar 

Bennett RK, Gregory GJ, Gonzalez JE, Har JRG, Antoniewicz MR, Papoutsakis ET (2021) Improving the methanol tolerance of an Escherichia coli methylotroph via adaptive laboratory evolution enhances synthetic methanol utilization. Front Microbiol 12:1–11. https://doi.org/10.3389/fmicb.2021.638426

Article  Google Scholar 

Bonatsou S, Paramithiotis S, Panagou EZ (2018) Evolution of yeast consortia during the fermentation of Kalamata natural black olives upon two initial acidification treatments. Front Microbiol 8:1–13. https://doi.org/10.3389/fmicb.2017.02673

Article  Google Scholar 

Borelli G, José J, Teixeira PJPL, dos Santos LV, Pereira GAG (2016) De novo assembly of Candida sojae and Candida boidinii genomes, unexplored xylose-consuming yeasts with potential for renewable biochemical production. Genome Announc 4:1–2. https://doi.org/10.1128/genomeA.01551-15

Article  Google Scholar 

Brinkmann U, Mueller RH, Babel W (1990) The growth rate-limiting reaction in methanol-assimilating yeasts. FEMS Microbiol Lett 87:261–265. https://doi.org/10.1016/0378-1097(90)90464-2

Article  CAS  Google Scholar 

Cai HL, Doi R, Shimada M, Hayakawa T, Nakagawa T (2021) Metabolic regulation adapting to high methanol environment in the methylotrophic yeast Ogataea methanolica. Microb Biotechnol 14:1512–1524. https://doi.org/10.1111/1751-7915.13811

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai HL, Shimada M, Nakagawa T (2022a) The potential and capability of the methylotrophic yeast Ogataea methanolica in a methanol bioeconomy. Yeast 39:440–448. https://doi.org/10.1002/yea.3807

Article  CAS  PubMed  Google Scholar 

Cai P, Li Y, Zhai X, Yao L, Ma X, Jia L, Zhou YJ (2022b) Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris. Bioresour Bioprocess 9:1–8. https://doi.org/10.1186/s40643-022-00551-1

Article  Google Scholar 

Cai P, Wu X, Deng J, Gao L, Shen Y, Yao L, Zhou YJ (2022c) Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci U S A 119:1–9. https://doi.org/10.1073/pnas.2201711119

Article  CAS  Google Scholar 

Camiolo S, Porru C, Benítez-Cabello A, Rodríguez-Gómez F, Calero-Delgado B, Porceddu A, Budroni M, Mannazzu I, Jiménez-Díaz R, Arroyo-López FN (2017) Genome overview of eight Candida boidinii strains isolated from human activities and wild environments. Stand Genomic Sci 12:1–14. https://doi.org/10.1186/s40793-017-0281-z

Article  CAS  Google Scholar 

Chen H, Wang Z, Wang Z, Dou J, Zhou C (2016) Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae. World J Microbiol Biotechnol 32:1–10. https://doi.org/10.1007/s11274-016-2010-y

Article  CAS  Google Scholar 

Chistoserdova L, Kalyuzhnaya MG (2018) Current trends in methylotrophy. Trends Microbiol 26:703–714. https://doi.org/10.1016/j.tim.2018.01.011

Article  CAS  PubMed  Google Scholar 

Cotton CA, Claassens NJ, Benito-Vaquerizo S, Bar-Even A (2020) Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol 62:168–180. https://doi.org/10.1016/j.copbio.2019.10.002

Article  CAS  PubMed  Google Scholar 

Demiray E, Karatay SE, Dönmez G (2022) Optimization study for enhanced biodiesel production by novel yeast isolates cultivated in dilute acid pretreated Pumpkin Peel. Bioenergy Res 15:1472–1481. https://doi.org/10.1007/s12155-022-10483-5

Article  CAS  Google Scholar 

Espinosa MI, Gonzalez-Garcia RA, Valgepea K, Plan MR, Scott C, Pretorius IS, Marcellin E, Paulsen IT, Williams TC (2020) Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun 11:5564. https://doi.org/10.1038/s41467-020-19390-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fabarius JT, Wegat V, Roth A, Sieber V (2021) Synthetic methylotrophy in yeasts: towards a circular bioeconomy. Trends Biotechnol 39:348–358. https://doi.org/10.1016/j.tibtech.2020.08.008

Article  CAS  PubMed  Google Scholar 

Fabricio MF, Valente P, Záchia Ayub MA (2019) Oleaginous yeast Meyerozyma guilliermondii shows fermentative metabolism of sugars in the biosynthesis of ethanol and converts raw glycerol and cheese whey permeate into polyunsaturated fatty acids. Biotechnol Prog 35:1–8. https://doi.org/10.1002/btpr.2895

Article  CAS  Google Scholar 

Fan L, Wang Y, Tuyishime P, Gao N, Li Q, Zheng P, Sun J, Ma Y (2018) Engineering artificial fusion proteins for enhanced methanol Bioconversion. ChemBioChem 19:2465–2471. https://doi.org/10.1002/cbic.201800424

Article  CAS  PubMed  Google Scholar 

Fernandes MA, Mota MN, Faria NT, Sá-Correia I (2023) An evolved strain of the oleaginous yeast Rhodotorula toruloides, multi-tolerant to the major inhibitors present in lignocellulosic hydrolysates, exhibits an altered cell envelope. J Fungi. https://doi.org/10.3390/jof9111073

Article  Google Scholar 

Frazão CJR, Walther T (2020) Syngas and methanol-based biorefinery concepts. Chem Ing Tech 92:1680–1699. https://doi.org/10.1002/cite.202000108

Article  CAS  Google Scholar 

Gan Y, Meng X, Gao C, Song W, Liu L, Chen X (2023) Metabolic engineering strategies for microbial utilization of methanol. Eng Microbiol 3:100081. https://doi.org/10.1016/j.engmic.2023.100081

Article  CAS  Google Scholar 

Gao Y, Liu N, Zhu Y, Yu S, Liu Q, Shi X, Xu J, Xu G, Zhang X, Shi J, Xu Z (2022) Improving glutathione production by engineered Pichia pastoris: strain construction and optimal precursor feeding. Appl Microbiol Biotechnol 106:1905–1917. https://doi.org/10.1007/s00253-022-11827-z

Article  CAS  PubMed  Google Scholar 

Godinho CP, Costa R, Sá-Correia I (2021) The ABC transporter Pdr18 is required for yeast thermotolerance due to its role in ergosterol transport and plasma membrane properties. Environ Microbiol 23:69–80. https://doi.org/10.1111/1462-2920.15253

Article  CAS  PubMed  Google Scholar 

Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J, Dong W, Xin F, Zhang W, Jiang M (2021) Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng 118:357–371. https://doi.org/10.1002/bit.27575

Article  CAS  PubMed  Google Scholar 

Guo F, Qiao Y, Xin F, Zhang W, Jiang M (2023) Bioconversion of C1 feedstocks for chemical production using Pichia pastoris. Trends Biotechnol 41:1066–1079. https://doi.org/10.1016/j.tibtech.2023.03.006

Article  CAS  PubMed  Google Scholar 

Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Fact 5:1–21. https://doi.org/10.1186/1475-2859-5-39

Article  CAS  Google Scholar 

Heperkan D (2013) Microbiota of table olive fermentations and criteria of selection for their use as starters. Front Microbiol 4:1–11. https://doi.org/10.3389/fmicb.2013.00143

Article  Google Scholar 

Comments (0)

No login
gif