Kimber TB, Chen Y, Volkamer A (2021) Deep learning in virtual screening: Recent applications and developments. Int J Mol Sci. https://doi.org/10.3390/ijms22094435
Article PubMed PubMed Central Google Scholar
Berdigaliyev N, Aljofan M (2020) An overview of drug discovery and development. Future Med Chem 12:939–947. https://doi.org/10.4155/fmc-2019-0307
Article CAS PubMed Google Scholar
Cavasotto CN, Di Filippo JI (2021) Artificial intelligence in the early stages of drug discovery. Arch Biochem Biophys 698:108730. https://doi.org/10.1016/j.abb.2020.108730
Article CAS PubMed Google Scholar
Li J, Fu A, Zhang L (2019) An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci 11:320–328. https://doi.org/10.1007/s12539-019-00327-w
Article CAS PubMed Google Scholar
Shen C, Ding J, Wang Z, Cao D, Ding X, Hou T (2020) From machine learning to deep learning: Advances in scoring functions for protein–ligand docking. WIREs Comput Mol Sci 10:1429. https://doi.org/10.1002/wcms.1429
Ayodele TO (2010) Types of machine learning algorithms. New Adv Mach Learn 3(19–48):5–1
Khamis MA, Gomaa W, Ahmed WF (2015) Machine learning in computational docking. Artif Intell Med 63:135–152. https://doi.org/10.1016/j.artmed.2015.02.002
Ma D-L, Chan DS-H, Leung C-H (2013) Drug repositioning by structure-based virtual screening. Chem Soc Rev 42:2130–2141. https://doi.org/10.1039/C2CS35357A
Article CAS PubMed Google Scholar
Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14:133–141. https://doi.org/10.1208/s12248-012-9322-0
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Ai H-X, Li S-M, Qi M-Y, Zhao J, Zhao Q, Liu H-S (2017) Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. Oncotarget 8:47
Zhang L, Qiao M, Gao H, Hu B, Tan H, Zhou X, Li CM (2016) Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale 8:14877–14887. https://doi.org/10.1039/C6NR01637E
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Zhang S (2017) Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: “Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang. Phys Life Rev 20:140–142. https://doi.org/10.1016/j.plrev.2017.01.007
Smith JS, Isayev O, Roitberg AE (2017) Data Descriptor: ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules. Sci Data 4:1–8. https://doi.org/10.1038/sdata.2017.193
Smith JS, Roitberg AE, Isayev O (2018) Transforming computational drug discovery with machine learning and AI. ACS Med Chem Lett 9:1065–1069. https://doi.org/10.1021/acsmedchemlett.8b00437
Article CAS PubMed PubMed Central Google Scholar
Smith JS, Nebgen B, Lubbers N, Isayev O, Roitberg AE (2018) Less is more: Sampling chemical space with active learning. J Chem Phys. https://doi.org/10.1063/1.5023802
Article PubMed PubMed Central Google Scholar
Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, Tretiak S, Isayev S, Roitberg A (2018) Outsmarting quantum chemistry through transfer learning. https://doi.org/10.26434/chemrxiv.6744440.v1.
Kaul D (2020) An overview of coronaviruses including the SARS-2 coronavirus: molecular biology, epidemiology and clinical implications. Curr Med Res Pract 10:54–64. https://doi.org/10.1016/j.cmrp.2020.04.001
Article PubMed PubMed Central Google Scholar
World Health Organization (n.d.) Weekly epidemiological update on COVID-19.
Torre-Fuentes L, Matías-Guiu J, Hernández-Lorenzo L, Montero-Escribano P, Pytel V, Porta-Etessam J, Gómez-Pinedo U, Matías-Guiu JA (2021) ACE2, TMPRSS2, and Furin variants and SARS-CoV-2 infection in Madrid, Spain. J Med Virol 93:863–869. https://doi.org/10.1002/jmv.26319
Article CAS PubMed Google Scholar
Vankadari N (2020) Structure of Furin protease binding to SARS-CoV-2 spike glycoprotein and implications for potential targets and virulence. J Phys Chem Lett 11:6655–6663. https://doi.org/10.1021/acs.jpclett.0c01698
Article CAS PubMed Google Scholar
Marra MA, Jones SJM, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YSN, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL (1979) The Genome sequence of the SARS-associated coronavirus. Science 300(2003):1399–1404. https://doi.org/10.1126/science.1085953
Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, Dantonio A, Di L, Eng H, Ferre R, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lee JC, Lee J, Liu W, Mason SW, Noell S, Novak JJ, Obach RS, Ogilvie K, Patel NC, Pettersson M, Rai DK, Reese MR, Sammons MF, Sathish JG, Singh RSP, Steppan CM, Stewart AE, Tuttle JB, Updyke L, Verhoest PR, Wei L, Yang Q, Zhu Y (1979) An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 374(2021):1586–1593. https://doi.org/10.1126/science.abl4784
Painter GR, Bowen RA, Bluemling GR, DeBergh J, Edpuganti V, Gruddanti PR, Guthrie DB, Hager M, Kuiper DL, Lockwood MA, Mitchell DG, Natchus MG, Sticher ZM, Kolykhalov AA (2019) The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal venezuelan equine encephalitis virus infection. Antiviral Res 171:104597. https://doi.org/10.1016/j.antiviral.2019.104597
Article CAS PubMed Google Scholar
Boucau J, Uddin R, Marino C, Regan J, Flynn JP, Choudhary MC, Chen G, Stuckwisch AM, Mathews J, Liew MY, Singh A, Reynolds Z, Iyer SL, Chamberlin GC, Vyas TD, Vyas JM, Turbett SE, Li JZ, Lemieux JE, Barczak AK, Siedner MJ (2019) Characterization of virologic rebound following nirmatrelvir-ritonavir treatment for coronavirus disease 2019 COVID-19. Clin Infect Dis 76(2023):e526–e529. https://doi.org/10.1093/cid/ciac512
Hu Y, Lewandowski EM, Tan H, Zhang X, Morgan RT, Zhang X, Jacobs LMC, Butler SG, Gongora MV, Choy J, Deng X, Chen Y, Wang J (2022) Naturally occurring mutations of SARS-CoV- main protease confer drug resistance to nirmatrelvir. BioRxiv. https://doi.org/10.1101/2022.06.28.497978
Article PubMed PubMed Central Google Scholar
Mitsuya H, Maeda K, Das D, Ghosh AK (2008) Development of protease inhibitors and the fight with drug-resistant HIV-1 variants. Adv Pharmacol 56:169–197. https://doi.org/10.1016/S1054-3589(07)56006-0
Article CAS PubMed Google Scholar
Hilgenfeld R (2014) From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 281:4085–4096. https://doi.org/10.1111/febs.12936
Article CAS PubMed PubMed Central Google Scholar
Macchiagodena M, Pagliai M, Procacci P (2020) Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chem Phys Lett 750:137489. https://doi.org/10.1016/J.CPLETT.2020.137489
Article CAS PubMed PubMed Central Google Scholar
Ma C, Xia Z, Sacco MD, Hu Y, Townsend JA, Meng X, Choza J, Tan H, Jang J, Gongora MV, Zhang X, Zhang F, Xiang Y, Marty MT, Chen Y, Wang J (2021) Discovery of Di- and trihaloacetamides as covalent SARS-CoV-2 main protease inhibitors with high target specificity. J Am Chem Soc 143:20697–20709. https://doi.org/10.1021/jacs.1c08060
Comments (0)