Structural impacts of two disease-linked ADAR1 mutants: a molecular dynamics study

Thomas JM, Beal PA (2017) How do ADARs bind RNA? New protein-RNA structures illuminate substrate recognition by the RNA editing ADARs. BioEssays 39(4). https://doi.org/10.1002/bies.201600187

Xu X, Wang Y, Liang H (2018) The role of A-to-I RNA editing in cancer development. Curr Opin Genet Dev 48:51–56

Article  CAS  PubMed  Google Scholar 

Hundley HA, Bass BL (2010) ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem Sci 35(7):377–383

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solomon O, Di Segni A, Cesarkas K et al (2017) RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat Commun 8(1):1440

Article  PubMed  PubMed Central  Google Scholar 

Savva YA, Rieder LE, Reenan RA (2012) The ADAR protein family. Genome Biol 13(12):252

Article  PubMed  PubMed Central  Google Scholar 

Oakes E, Anderson A, Cohen-Gadol A, Hundley HA (2017) Adenosine Deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B Pre-mRNA inhibits RNA editing in Glioblastoma. J Biol Chem 292(10):4326–4335

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song B, Shiromoto Y, Minakuchi M, Nishikura K (2022) The role of RNA editing enzyme ADAR1 in human disease. Wiley Interdiscip Rev RNA 13(1):e1665

Article  CAS  PubMed  Google Scholar 

Nakahama T, Kawahara Y (2021) Deciphering the Biological significance of ADAR1-Z-RNA interactions. Int J Mol Sci 22(21):11435

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin MH, Chou PC, Lee IC, Yang SF, Yu HS, Yu S (2023) Inherited Reticulate Pigmentary disorders. Genes (Basel) 14(6):1300

Article  CAS  PubMed  Google Scholar 

Beyer U, Brand F, Martens H et al (2017) Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis. Acta Neuropathol 134(6):905–922

Article  CAS  PubMed  Google Scholar 

Crow YJ, Manel N (2015) Aicardi-Goutières syndrome and the type I interferonopathies. Nat Rev Immunol 15(7):429–440

Article  CAS  PubMed  Google Scholar 

Quin J, Sedmík J, Vukić D, Khan A, Keegan LP, O’Connell MA (2021) ADAR RNA modifications, the Epitranscriptome and Innate Immunity. Trends Biochem Sci 46(9):758–771

Article  CAS  PubMed  Google Scholar 

Baker AR, Slack FJ (2022) ADAR1 and its implications in cancer development and treatment. Trends Genet 38(8):821–830

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Lazzaro G, Graziola F, Sancesario A et al (2020) Movement disorders in ADAR1 disease: insights from a comprehensive cohort. Parkinsonism Relat Disord 79:100–104

Article  PubMed  Google Scholar 

Chen J, Wang W, Sun H, Pang L, Bao H (2021) Binding mechanism of inhibitors to p38α MAP kinase deciphered by using multiple replica Gaussian accelerated molecular dynamics and calculations of binding free energies. Comput Biol Med 134:104485

Article  CAS  PubMed  Google Scholar 

Jonniya NA, Sk MF, Kar P (2021) Characterizing an allosteric inhibitor-induced inactive state in with-no-lysine kinase 1 using Gaussian accelerated molecular dynamics simulations. Phys Chem Chem Phys 23(12):7343–7358

Article  CAS  PubMed  Google Scholar 

Poli G, Barravecchia I, Demontis GC et al (2022) Predicting potentially pathogenic effects of hRPE65 missense mutations: a computational strategy based on molecular dynamics simulations. J Enzyme Inhib Med Chem 37(1):1765–1772

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallardo A, Bogart BM, Dutagaci B (2022) Protein-nucleic acid interactions for RNA polymerase II elongation factors by Molecular Dynamics simulations. J Chem Inf Model 62(12):3079–3089

Article  CAS  PubMed  Google Scholar 

Rollins ZA, Faller R, George SC (2022) Using molecular dynamics simulations to interrogate T cell receptor non-equilibrium kinetics. Comput Struct Biotechnol J 20:2124–2133

Article  CAS  PubMed  PubMed Central  Google Scholar 

Athanasiadis A, Placido D, Maas S, Brown BA 2nd, Lowenhaupt K, Rich A (2005) The crystal structure of the zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J Mol Biol 351(3):496–507

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19(6):679–682

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Park S, Beal PA (2018) Selective recognition of RNA substrates by ADAR Deaminase domains. Biochemistry 57(10):1640–1651

Article  CAS  PubMed  Google Scholar 

Matthews MM, Thomas JM, Zheng Y et al (2016) Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol 23(5):426–433

Article  CAS  PubMed  PubMed Central  Google Scholar 

Macbeth MR, Schubert HL, Vandemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309(5740):1534–1539

Article  CAS  PubMed  PubMed Central  Google Scholar 

BIOVIA, Systèmes D (2020) Discovery Studio, San Diego: Dassault Systèmes, 2023

Hsu CH, Chen YJ, Yang CN (2022) An order-to-disorder structural switch regulates HIF-1 transcription through S247 phosphorylation in the HIF1α PAS-B domain. Comput Biol Med 149:106006

Article  CAS  PubMed  Google Scholar 

Chen YJ, Li PY, Yang CN (2021) Molecular dynamics study of enhanced autophosphorylation by S904F mutation of the RET kinase domain. J Struct Biol 213(4):107799

Article  CAS  PubMed  Google Scholar 

Chuang YC, Huang BY, Chang HW, Yang CN (2019) Molecular modeling of ALK L1198F and/or G1202R mutations to Determine Differential Crizotinib Sensitivity. Sci Rep 9(1):11390

Article  PubMed  PubMed Central  Google Scholar 

Fisher AJ, Beal PA (2017) Effects of Aicardi-Goutières syndrome mutations predicted from ADAR-RNA structures. RNA Biol 14(2):164–170

Article  PubMed  Google Scholar 

Yu H, Bai K, Cheng Y et al (2023) Clinical significance, tumor immune landscape and immunotherapy responses of ADAR in pan-cancer and its association with proliferation and metastasis of bladder cancer. Aging 15(13):6302–6330

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhate A, Sun T, Li JB (2019) ADAR1: a New Target for Immuno-Oncology Therapy. Mol Cell 73(5):866–868

Article  CAS  PubMed  Google Scholar 

Ishizuka JJ, Manguso RT, Cheruiyot CK et al (2019) Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565(7737):43–48

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif