From mundane to surprising nonadditivity: drivers and impact on ML models

Gogishvili D, Nittinger E, Margreitter C, Tyrchan C (2021) Nonadditivity in public and inhouse data: implications for drug design. J Cheminformatics 13:47. https://doi.org/10.1186/s13321-021-00525-z

Article  CAS  Google Scholar 

Biela A, Betz M, Heine A, Klebe G (2012) Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein-ligand binding. ChemMedChem 7:1423–1434. https://doi.org/10.1002/cmdc.201200206

Article  CAS  PubMed  Google Scholar 

Kramer C, Fuchs JE, Liedl KR (2015) Strong nonadditivity as a key structure–activity relationship feature: distinguishing structural changes from assay artifacts. J Chem Inf Model 55:483–494. https://doi.org/10.1021/acs.jcim.5b00018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez L, Xu R, Sinko W et al (2018) Mathematical and Structural characterization of strong nonadditive structure–activity relationship caused by protein conformational changes. J Med Chem 61:7754–7766. https://doi.org/10.1021/acs.jmedchem.8b00713

Article  CAS  PubMed  Google Scholar 

Kramer C (2019) Nonadditivity Analysis. J Chem Inf Model 59:4034–4042. https://doi.org/10.1021/acs.jcim.9b00631

Article  CAS  PubMed  Google Scholar 

Krummenacher D, He W, Kuhn B et al (2023) Discovery of orally available and Brain Penetrant AEP inhibitors. J Med Chem 66:17026–17043. https://doi.org/10.1021/acs.jmedchem.3c01804

Article  CAS  PubMed  Google Scholar 

Hunziker D, Reinehr S, Palmhof M et al (2022) Synthesis, characterization, and in vivo evaluation of a novel potent autotaxin-inhibitor. Front Pharmacol 12

Hilpert H, Guba W, Woltering TJ et al (2013) β-Secretase (BACE1) inhibitors with high in vivo efficacy suitable for clinical evaluation in Alzheimer’s Disease. J Med Chem 56:3980–3995. https://doi.org/10.1021/jm400225m

Article  CAS  PubMed  Google Scholar 

Nettekoven M, Adam J-M, Bendels S et al (2016) Novel triazolopyrimidine-derived cannabinoid receptor 2 agonists as potential treatment for inflammatory kidney diseases. ChemMedChem 11:179–189. https://doi.org/10.1002/cmdc.201500218

Article  CAS  PubMed  Google Scholar 

Richter H, Satz AL, Bedoucha M et al (2019) DNA-Encoded Library-Derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport Syndrome. ACS Chem Biol 14:37–49. https://doi.org/10.1021/acschembio.8b00866

Article  CAS  PubMed  Google Scholar 

Lübbers T, Böhringer M, Gobbi L et al (2007) 1,3-Disubstituted 4-aminopiperidines as useful tools in the optimization of the 2-aminobenzo[a]quinolizine dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 17:2966–2970. https://doi.org/10.1016/j.bmcl.2007.03.072

Article  CAS  PubMed  Google Scholar 

Pinard E, Alanine A, Alberati D et al (2010) Selective GlyT1 inhibitors: Discovery of [4-(3-Fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a Promising Novel Medicine to treat Schizophrenia. J Med Chem 53:4603–4614. https://doi.org/10.1021/jm100210p

Article  CAS  PubMed  Google Scholar 

Tosstorff A, Rudolph MG, Cole JC et al (2022) A high quality, industrial data set for binding affinity prediction: performance comparison in different early drug discovery scenarios. J Comput Aided Mol Des 36:753–765. https://doi.org/10.1007/s10822-022-00478-x

Article  CAS  PubMed  Google Scholar 

Ratni H, Karp GM, Weetall M et al (2016) Specific Correction of Alternative Survival Motor Neuron 2 splicing by small molecules: Discovery of a potential Novel Medicine to treat spinal muscular atrophy. J Med Chem 59:6086–6100. https://doi.org/10.1021/acs.jmedchem.6b00459

Article  CAS  PubMed  Google Scholar 

Alsenz J, Kansy M (2007) High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev 59:546–567. https://doi.org/10.1016/j.addr.2007.05.007

Article  CAS  PubMed  Google Scholar 

Wagner B, Fischer H, Kansy M et al (2015) Carrier mediated distribution system (CAMDIS): a new approach for the measurement of octanol/water distribution coefficients. Eur J Pharm Sci 68:68–77. https://doi.org/10.1016/j.ejps.2014.12.009

Article  CAS  PubMed  Google Scholar 

Chen X, Murawski A, Patel K et al (2008) A Novel Design of Artificial membrane for improving the PAMPA Model. Pharm Res 25:1511–1520. https://doi.org/10.1007/s11095-007-9517-8

Article  CAS  PubMed  Google Scholar 

Wildman SA, Crippen GM (1999) Prediction of Physicochemical parameters by Atomic contributions. J Chem Inf Comput Sci 39:868–873. https://doi.org/10.1021/ci990307l

Article  CAS  Google Scholar 

Kramer C, Dahl G, Tyrchan C, Ulander J (2016) A comprehensive company database analysis of biological assay variability. Drug Discov Today 21:1213–1221. https://doi.org/10.1016/j.drudis.2016.03.015

Article  PubMed  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A et al Scikit-learn: machine learning in Python. Mach Learn PYTHON

Xiong Z, Wang D, Liu X et al (2020) Pushing the boundaries of molecular representation for Drug Discovery with the graph attention mechanism. J Med Chem 63:8749–8760. https://doi.org/10.1021/acs.jmedchem.9b00959

Article  CAS  PubMed  Google Scholar 

Paszke A, Gross S, Massa F et al (2019) PyTorch: an imperative style, High-Performance Deep Learning Library. Advances in neural information Processing systems. Curran Associates, Inc

RDKit Open-source cheminformatics

Dalke A, Hert J, Kramer C (2018) J Chem Inf Model 58:902–910. https://doi.org/10.1021/acs.jcim.8b00173. mmpdb: An Open-Source Matched Molecular Pair Platform for Large Multiproperty Data Sets

Leach AG, Pilling EA, Rabow AA et al (2012) Enantiomeric pairs reveal that key medicinal chemistry parameters vary more than simple physical property based models can explain. MedChemComm 3:528–540. https://doi.org/10.1039/C2MD20010D

Article  CAS  Google Scholar 

Hall LH, Kier LB (1991) The Molecular Connectivity Chi indexes and Kappa shape indexes in Structure-Property Modeling. Reviews in Computational Chemistry. Wiley, Ltd, pp 367–422

Chapter  Google Scholar 

Kwapien K, Nittinger E, He J et al (2022) Implications of Additivity and Nonadditivity for Machine Learning and Deep Learning models in Drug Design. ACS Omega 7:26573–26581. https://doi.org/10.1021/acsomega.2c02738

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuhn B, Mohr P, Stahl M (2010) Intramolecular Hydrogen Bonding in Medicinal Chemistry. J Med Chem 53:2601–2611. https://doi.org/10.1021/jm100087s

Article  CAS  PubMed  Google Scholar 

Veber DF, Johnson SR, Cheng H-Y et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n

Article  CAS  PubMed  Google Scholar 

Diukendjieva A, Tsakovska I, Alov P et al (2019) Advances in the prediction of gastrointestinal absorption: quantitative structure-activity relationship (QSAR) modelling of PAMPA permeability. Comput Toxicol 10:51–59. https://doi.org/10.1016/j.comtox.2018.12.008

Article  Google Scholar 

Dossetter AG (2012) A matched molecular pair analysis of in vitro human microsomal metabolic stability measurements for methylene substitution or replacements – identification of those transforms more likely to have beneficial effects. MedChemComm 3:1518. https://doi.org/10.1039/c2md20226c

Article  CAS  Google Scholar 

van Tilborg D, Alenicheva A, Grisoni F (2022) Exposing the Limitations of Molecular Machine Learning with Activity cliffs. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.2c01073

Article  PubMed  PubMed Central  Google Scholar 

Tamura S, Miyao T, Bajorath J (2023) Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity. J Cheminformatics 15:4. https://doi.org/10.1186/s13321-022-00676-7

Article  Google Scholar 

Comments (0)

No login
gif