FitScore: a fast machine learning-based score for 3D virtual screening enrichment

Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev. https://doi.org/10.1007/s12551-016-0247-1

Article  PubMed  PubMed Central  Google Scholar 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucl Acids Res. https://doi.org/10.1093/nar/28.1.235

Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00055

Article  PubMed  PubMed Central  Google Scholar 

Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol. https://doi.org/10.1016/1074-5521(95)90050-0

Article  PubMed  Google Scholar 

Li J, Fu A, Zhang L (2019) An overview of scoring functions used for protein–ligand interactions in Molecular Docking. Interdiscip Sci Comput Life Sci. https://doi.org/10.1007/s12539-019-00327-w

Article  Google Scholar 

Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol. https://doi.org/10.1006/jmbi.1996.0897

Article  PubMed  Google Scholar 

Schrödinger LLC, New York (2023) NY, https://newsite.schrodinger.com accessed 24 Jan 24 2024

Gehlhaar DK, Luty BA, Cheung PP, Litman AH, Owen RM, Rose PW (2022) The Pfizer crystal structure database: an essential tool for structure-based design at Pfizer. J Comp Chem. https://doi.org/10.1002/jcc.26862

Article  Google Scholar 

Goh GB, Hodas NO, Vishnu (2017) Deep learning for computational chemistry. J Comp Chem. https://doi.org/10.1002/jcc.24764

Article  Google Scholar 

Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular Docking and structure-based drug design strategies. Molecules. https://doi.org/10.3390/molecules200713384

Article  PubMed  PubMed Central  Google Scholar 

Rahman J, Newton MAH, Ali ME, Satter A (2024) Distance plus attention for binding affinity prediction. J Chem Inf. https://doi.org/10.1186/s13321-024-00844-x

Article  Google Scholar 

Bhatt R, Koes DR, Durrant JD (2024) CENsible: interpretable insights into small-molecule binding with Context Explanation Networks. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.4c00825

Article  PubMed  PubMed Central  Google Scholar 

Anaconda Software Distribution Computer software. Version 2-2.4.0. https://anaconda.com accessed 10 Dec 2023

McKinney W (2010) Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, United States, June 28-July 3, 51–56

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D (2020) SciPy 1.0: Fundamental algorithms for Scientific Computing in Python. Nat Methods. https://doi.org/10.1038/s41592-019-0686-2

Article  PubMed  PubMed Central  Google Scholar 

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature. https://doi.org/10.1038/s41586-020-2649-2

Article  PubMed  PubMed Central  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Google Scholar 

TensorFlow Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org accessed 29 Jan 2024

OEChem TK 3.4.0.1. OpenEye, Cadence Molecular Sciences, Santa Fe, NM. http://www.eyesopen.com accessed 10 Dec 2023

Spicoli TK 1.5.6.1. OpenEye, Cadence Molecular Sciences, Santa Fe, NM. http://www.eyesopen.com accessed 10 Dec 2023

RDKit Open-source cheminformatics. https://www.rdkit.org. https://doi.org/10.5281/zenodo.591637 accessed 17 July 2024

Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem. https://doi.org/10.1021/jm100112j

Article  PubMed  PubMed Central  Google Scholar 

Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. https://doi.org/10.1111/j.1742-4658.2007.06178.x

Article  PubMed  Google Scholar 

Nasteski V (2017) An overview of the supervised machine learning methods. Horizons. https://doi.org/10.20544/HORIZONS.B.04.1.17.P05

Article  Google Scholar 

Okada S, Ohzeki M, Taguchi S (2019) Efficient partition of integer optimization problems with one-hot encoding. Sci Rep. https://doi.org/10.1038/s41598-019-49539-6

Article  PubMed  PubMed Central  Google Scholar 

Kosaraju N, Sankepally SR, Rao KM (2023) Categorical data: need, Encoding, selection of Encoding Method and its Emergence in Machine Learning Models—A practical review study on Heart Disease Prediction dataset using Pearson correlation. Proc Int Conf Data Sci Apps. https://doi.org/10.1007/978-981-19-6631-6_26

Article  Google Scholar 

Keras (2024) https://github.com/fchollet/keras accessed 29

Schrödinger Release 2023-1: SiteMap, Schrödinger, LLC, New York (2023) NY, https://newsite.schrodinger.com accessed 24 Jan 2024

Verdonk ML, Cole JC, Watson P, Gillet V, Willett P (2001) SuperStar: improved knowledge-based interaction fields for protein binding sites. J Mol Biol. https://doi.org/10.1006/jmbi.2001.4452

Article  PubMed  Google Scholar 

Pratt JW, Gibbons JD (1981) Kolmogorow-Smirnov two-sample tests. Concepts of nonparametric theory. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5931-2_7

Chapter  Google Scholar 

Endah SN, Widodo AP, Fariq ML, Nadianada SI, Maulana F (2017) Beyond back-propagation learning for diabetic detection: convergence comparison of gradient descent, momentum and adaptive learning rate. Int Conf Inf Comput Sci. https://doi.org/10.1109/ICICOS.2017.8276360

Article  Google Scholar 

Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem. https://doi.org/10.1021/jm300687e

Article  PubMed  PubMed Central  Google Scholar 

Jochen S, Flachsenberg F, Rarey M (2019) In need of Bias Control: evaluating Chemical Data for Machine Learning in structure-based virtual screening. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.8b00712

Article  Google Scholar 

Schrödinger Release 2023-1: LigPrep, Schrödinger, LLC, New York (2023) NY, https://newsite.schrodinger.com accessed 24 Jan 2024

Schrödinger Release 2023-1: PrepWizard, Schrödinger, LLC, New York (2023) NY, https://newsite.schrodinger.com accessed 24 Jan 2024

Truchon JF, Bayly CI (2007) Evaluating virtual screening methods: Good and Bad Metrics for the early Recognition Problem. J Chem Inf Model. https://doi.org/10.1021/ci600426e

Article  PubMed  Google Scholar 

Comments (0)

No login
gif