Holistic in silico developability assessment of novel classes of small proteins using publicly available sequence-based predictors

Kesik-Brodacka M (2018) Progress in biopharmaceutical development. Biotechnol Appl Biochem 65(3):306–322. https://doi.org/10.1002/bab.1617

Article  CAS  PubMed  Google Scholar 

O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M (2020) Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol Adv 43:107552. https://doi.org/10.1016/j.biotechadv.2020.107552

Article  CAS  PubMed  Google Scholar 

Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36(12):1136–1145. https://doi.org/10.1038/nbt.4305

Article  CAS  PubMed  Google Scholar 

Shah DK, Betts AM (2013) Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs 5(2):297–305. https://doi.org/10.4161/mabs.23684

Article  PubMed  PubMed Central  Google Scholar 

Thurber GM, Schmidt MM, Wittrup KD (2008) Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 60(12):1421–1434. https://doi.org/10.1016/j.addr.2008.04.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skerra A (2000) Engineered protein scaffolds for molecular recognition. J Mol Recognit 13(4):167–187

Article  CAS  PubMed  Google Scholar 

Gebauer M, Skerra A (2020) Engineered protein scaffolds as next-generation therapeutics. Annu Rev Pharmacol Toxicol 60:391–415. https://doi.org/10.1146/annurev-pharmtox-010818-021118

Article  CAS  PubMed  Google Scholar 

Ganfornina MD, Åkerström B, Sanchez D (2022) Editorial: functional profile of the lipocalin protein family. Front Physiol. https://doi.org/10.3389/fphys.2022.904702

Article  PubMed  PubMed Central  Google Scholar 

Flower DR, North ACT, Attwood TK (1993) Structure and sequence relationships in the lipocalins and related proteins. Protein Sci 2(5):753–761. https://doi.org/10.1002/pro.5560020507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morales-Kastresana A, Siegemund M, Haak S, Peper-Gabriel J, Neiens V, Rothe C (2022) Anticalin®-based therapeutics: expanding new frontiers in drug development. Int Rev Cell Mol Biol 369:89–106. https://doi.org/10.1016/bs.ircmb.2022.03.009

Article  CAS  PubMed  Google Scholar 

Hinner MJ, Aiba RSB, Jaquin TJ, Berger S, Dürr MC, Schlosser C, Allersdorfer A, Wiedenmann A, Matschiner G, Schüler J, Moebius U, Rothe C, Matis L, Olwill SA (2019) Tumor-localized costimulatory T-cell engagement by the 4–1BB/HER2 bispecific antibody-anticalin fusion PRS-343. Clin Cancer Res 25(19):5878–5889. https://doi.org/10.1158/1078-0432.CCR-18-3654

Article  CAS  PubMed  Google Scholar 

Peper-Gabriel JK, Pavlidou M, Pattarini L, Morales-Kastresana A, Jaquin TJ, Gallou C, Hansbauer E-M, Richter M, Lelievre H, Scholer-Dahirel A, Bossenmaier B, Sancerne C, Riviere M, Grandclaudon M, Zettl M, Bel Aiba RS, Rothe C, Blanc V, Olwill SA (2022) The PD-L1/4-1BB bispecific antibody-anticalin fusion protein PRS-344/S095012 elicits strong T-cell stimulation in a tumor-localized manner. Clin Cancer Res 28(15):3387–3399. https://doi.org/10.1158/1078-0432.CCR-21-2762

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wachter S, Angevin T, Bubna N, Tan A, Cichy A, Brown D, Wolfe LS, Sappington R, Lilla E, Berry L, Grismer D, Orth C, Blanusa M, Mostafa S, Kaufmann H, Felderer K (2023) Application of platform process development approaches to the manufacturing of Mabcalin™ bispecifics. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2023.10.003

Article  PubMed  Google Scholar 

Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, Yu Y, Park J, Raghava S, Welsh J, Rauscher M, Raghunathan G, Hsieh M, Chen Y-L, Nguyen HT, Fayadat-Dilman L (2020) Predicting antibody developability profiles through early stage discovery screening. MAbs. https://doi.org/10.1080/19420862.2020.1743053

Article  PubMed  PubMed Central  Google Scholar 

Hartmann S, Kocher HP (2015) Chapter 7—best practices in assessment of developability of biopharmaceutical candidates. In: Kumar S, Singh SK (eds) Developability of biotherapeutics computational approaches. CRC Press, Boca Raton

Google Scholar 

Narayanan H, Dingfelder F, Butté A, Lorenzen N, Sokolov M, Arosio P (2021) Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol Sci 42(3):151–165. https://doi.org/10.1016/j.tips.2020.12.004

Article  CAS  PubMed  Google Scholar 

Narayanan H, Dingfelder F, Condado Morales I, Patel B, Heding KE, Bjelke JR, Egebjerg T, Butté A, Sokolov M, Lorenzen N, Arosio P (2021) Design of biopharmaceutical formulation accelerated by machine learning for biologics. Mol Pharm 18(10):3843–3853. https://doi.org/10.1021/acs.molpharmaceut.1c00469

Article  CAS  PubMed  Google Scholar 

Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H (2019) Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 11(2):239–264. https://doi.org/10.1080/19420862.2018.1553476

Article  CAS  PubMed  Google Scholar 

Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H (2015) Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci 104(6):1885–1898. https://doi.org/10.1002/jps.24430

Article  CAS  PubMed  Google Scholar 

Chen X, Dougherty T, Hong C, Schibler R, Zhao YC, Sadeghi R, Matasci N, Wu Y-C, Kerman I (2020) Predicting antibody developability from sequence using machine learning. biorxiv. https://doi.org/10.1101/2020.06.18.159798

Article  PubMed  PubMed Central  Google Scholar 

Goyon A, D’Atri V, Colas O, Fekete S, Beck A, Guillarme D (2017) Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: feasibility assessment for future mass spectrometry hyphenation. J Chromatogr, B: Anal Technol Biomed Life Sci 1065–1066:35–43. https://doi.org/10.1016/j.jchromb.2017.09.027

Article  CAS  Google Scholar 

Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, Bujotzek A, Shi J, Deane CM (2019) Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA 116(10):4025–4030. https://doi.org/10.1073/pnas.1810576116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, Warwicker J, Martin ACR (2022) Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs. https://doi.org/10.1080/19420862.2021.2020082

Article  PubMed  PubMed Central  Google Scholar 

Hebditch M, Warwicker J (2019) Charge and hydrophobicity are key features in sequence-trained machine learning models for predicting the biophysical properties of clinical-stage antibodies. PeerJ. https://doi.org/10.7717/peerj.8199

Article  PubMed  PubMed Central  Google Scholar 

Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101(1):102–115. https://doi.org/10.1002/jps.22758

Article  CAS  PubMed  Google Scholar 

Tiwari A, Bansode V, Rathore AS (2022) Application of advanced machine learning algorithms for anomaly detection and quantitative prediction in protein A chromatography. J Chromatogr A 1682:463486. https://doi.org/10.1016/j.chroma.2022.463486

Article  CAS  PubMed  Google Scholar 

Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, Fisher J, Jansen JM, Duca JS, Rush TS, Zentgraf M, Hill JE, Krutoholow E, Kohler M, Blaney J, Funatsu K, Luebkemann C, Schneider G (2020) Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 19(5):353–364.

Comments (0)

No login
gif