Kesik-Brodacka M (2018) Progress in biopharmaceutical development. Biotechnol Appl Biochem 65(3):306–322. https://doi.org/10.1002/bab.1617
Article CAS PubMed Google Scholar
O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M (2020) Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol Adv 43:107552. https://doi.org/10.1016/j.biotechadv.2020.107552
Article CAS PubMed Google Scholar
Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36(12):1136–1145. https://doi.org/10.1038/nbt.4305
Article CAS PubMed Google Scholar
Shah DK, Betts AM (2013) Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs 5(2):297–305. https://doi.org/10.4161/mabs.23684
Article PubMed PubMed Central Google Scholar
Thurber GM, Schmidt MM, Wittrup KD (2008) Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev 60(12):1421–1434. https://doi.org/10.1016/j.addr.2008.04.012
Article CAS PubMed PubMed Central Google Scholar
Skerra A (2000) Engineered protein scaffolds for molecular recognition. J Mol Recognit 13(4):167–187
Article CAS PubMed Google Scholar
Gebauer M, Skerra A (2020) Engineered protein scaffolds as next-generation therapeutics. Annu Rev Pharmacol Toxicol 60:391–415. https://doi.org/10.1146/annurev-pharmtox-010818-021118
Article CAS PubMed Google Scholar
Ganfornina MD, Åkerström B, Sanchez D (2022) Editorial: functional profile of the lipocalin protein family. Front Physiol. https://doi.org/10.3389/fphys.2022.904702
Article PubMed PubMed Central Google Scholar
Flower DR, North ACT, Attwood TK (1993) Structure and sequence relationships in the lipocalins and related proteins. Protein Sci 2(5):753–761. https://doi.org/10.1002/pro.5560020507
Article CAS PubMed PubMed Central Google Scholar
Morales-Kastresana A, Siegemund M, Haak S, Peper-Gabriel J, Neiens V, Rothe C (2022) Anticalin®-based therapeutics: expanding new frontiers in drug development. Int Rev Cell Mol Biol 369:89–106. https://doi.org/10.1016/bs.ircmb.2022.03.009
Article CAS PubMed Google Scholar
Hinner MJ, Aiba RSB, Jaquin TJ, Berger S, Dürr MC, Schlosser C, Allersdorfer A, Wiedenmann A, Matschiner G, Schüler J, Moebius U, Rothe C, Matis L, Olwill SA (2019) Tumor-localized costimulatory T-cell engagement by the 4–1BB/HER2 bispecific antibody-anticalin fusion PRS-343. Clin Cancer Res 25(19):5878–5889. https://doi.org/10.1158/1078-0432.CCR-18-3654
Article CAS PubMed Google Scholar
Peper-Gabriel JK, Pavlidou M, Pattarini L, Morales-Kastresana A, Jaquin TJ, Gallou C, Hansbauer E-M, Richter M, Lelievre H, Scholer-Dahirel A, Bossenmaier B, Sancerne C, Riviere M, Grandclaudon M, Zettl M, Bel Aiba RS, Rothe C, Blanc V, Olwill SA (2022) The PD-L1/4-1BB bispecific antibody-anticalin fusion protein PRS-344/S095012 elicits strong T-cell stimulation in a tumor-localized manner. Clin Cancer Res 28(15):3387–3399. https://doi.org/10.1158/1078-0432.CCR-21-2762
Article CAS PubMed PubMed Central Google Scholar
Wachter S, Angevin T, Bubna N, Tan A, Cichy A, Brown D, Wolfe LS, Sappington R, Lilla E, Berry L, Grismer D, Orth C, Blanusa M, Mostafa S, Kaufmann H, Felderer K (2023) Application of platform process development approaches to the manufacturing of Mabcalin™ bispecifics. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2023.10.003
Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, Yu Y, Park J, Raghava S, Welsh J, Rauscher M, Raghunathan G, Hsieh M, Chen Y-L, Nguyen HT, Fayadat-Dilman L (2020) Predicting antibody developability profiles through early stage discovery screening. MAbs. https://doi.org/10.1080/19420862.2020.1743053
Article PubMed PubMed Central Google Scholar
Hartmann S, Kocher HP (2015) Chapter 7—best practices in assessment of developability of biopharmaceutical candidates. In: Kumar S, Singh SK (eds) Developability of biotherapeutics computational approaches. CRC Press, Boca Raton
Narayanan H, Dingfelder F, Butté A, Lorenzen N, Sokolov M, Arosio P (2021) Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol Sci 42(3):151–165. https://doi.org/10.1016/j.tips.2020.12.004
Article CAS PubMed Google Scholar
Narayanan H, Dingfelder F, Condado Morales I, Patel B, Heding KE, Bjelke JR, Egebjerg T, Butté A, Sokolov M, Lorenzen N, Arosio P (2021) Design of biopharmaceutical formulation accelerated by machine learning for biologics. Mol Pharm 18(10):3843–3853. https://doi.org/10.1021/acs.molpharmaceut.1c00469
Article CAS PubMed Google Scholar
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H (2019) Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 11(2):239–264. https://doi.org/10.1080/19420862.2018.1553476
Article CAS PubMed Google Scholar
Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H (2015) Developability assessment during the selection of novel therapeutic antibodies. J Pharm Sci 104(6):1885–1898. https://doi.org/10.1002/jps.24430
Article CAS PubMed Google Scholar
Chen X, Dougherty T, Hong C, Schibler R, Zhao YC, Sadeghi R, Matasci N, Wu Y-C, Kerman I (2020) Predicting antibody developability from sequence using machine learning. biorxiv. https://doi.org/10.1101/2020.06.18.159798
Article PubMed PubMed Central Google Scholar
Goyon A, D’Atri V, Colas O, Fekete S, Beck A, Guillarme D (2017) Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: feasibility assessment for future mass spectrometry hyphenation. J Chromatogr, B: Anal Technol Biomed Life Sci 1065–1066:35–43. https://doi.org/10.1016/j.jchromb.2017.09.027
Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, Bujotzek A, Shi J, Deane CM (2019) Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci USA 116(10):4025–4030. https://doi.org/10.1073/pnas.1810576116
Article CAS PubMed PubMed Central Google Scholar
Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, Warwicker J, Martin ACR (2022) Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs. https://doi.org/10.1080/19420862.2021.2020082
Article PubMed PubMed Central Google Scholar
Hebditch M, Warwicker J (2019) Charge and hydrophobicity are key features in sequence-trained machine learning models for predicting the biophysical properties of clinical-stage antibodies. PeerJ. https://doi.org/10.7717/peerj.8199
Article PubMed PubMed Central Google Scholar
Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101(1):102–115. https://doi.org/10.1002/jps.22758
Article CAS PubMed Google Scholar
Tiwari A, Bansode V, Rathore AS (2022) Application of advanced machine learning algorithms for anomaly detection and quantitative prediction in protein A chromatography. J Chromatogr A 1682:463486. https://doi.org/10.1016/j.chroma.2022.463486
Article CAS PubMed Google Scholar
Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, Fisher J, Jansen JM, Duca JS, Rush TS, Zentgraf M, Hill JE, Krutoholow E, Kohler M, Blaney J, Funatsu K, Luebkemann C, Schneider G (2020) Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 19(5):353–364.
Comments (0)