Kapinus, V.N., Kaplan, M.A., Yaroslavtseva-Isayeva, E.V., Spichenkova, I.S., and Ivanov, S.A., Chlorin E6-photodynamic therapy basal cell carcinoma, Res. Pract. Med. J., 2021, vol. 8, no. 4, pp. 33–43. https://doi.org/10.17709/2410-1893-2021-8-4-3
Lebedev, M.V., Abdullina, Yu.A, and Zakha-rova, I.Yu., Specialized medical care for patients with malignant neoplasms of the maxillofacial area in the Penza region of Russia, Biomed. Photonics, 2021, vol. 10, no. 3, pp. 23–31. https://doi.org/10.24931/2413-9432-2021-10-3-23-31
Dąbrowski, J.M. and Arnaut, L.G., Photodynamic therapy (PDT) of cancer: From local to systemic treatment, Photochem. Photobiol. Sci., 2015, vol. 14, no. 10, pp. 1765–1780. https://doi.org/10.1039/c5pp00132c
Benov, L., Photodynamic therapy: Current status and future directions, Med. Princ. Pract., 2015, vol. 24, no. 1, pp. 14–28.
Dąbrowski, J.M., Pucelik, B., Regiel-Futyra, A., Brindell, M., Mazuryk, O., Kyzioł, A., Stochel, G., Macyk, W., and Arnaut, L.G., Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers, Coord. Chem. Rev., 2016, vol. 325, pp. 67–101. https://doi.org/10.1016/j.ccr.2016.06.007
Bauer, G., The antitumor effect of singlet oxygen, Anticancer Res., 2016, vol. 36, no. 11, pp. 5649–5663.
Article CAS PubMed Google Scholar
Clement, M. Daniel, G., and Trelles, M., Optimising the design of a broad-band light source for the treatment of skin, J. Cosmet. Laser Ther., 2005, vol. 7, nos. 3–4, pp. 177–189.
Konan, Y.N., Gurny, R., and Allémann, E., State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2002, vol. 66, no. 2, pp. 89–106.
Article CAS PubMed Google Scholar
Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., Hahn, S.M., Hamblin, M.R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B.C., and Golab, J., Photodynamic therapy of cancer: An update, CA: Cancer J. Clin., 2011, vol. 61, no. 4, pp. 250–281. https://doi.org/10.3322/caac.20114
Liu, Y., Qin, R., Zaat, S.A.J., Breukink, E., and Heger, M., Antibacterial photodynamic therapy: Overview of a promising approach to fight antibiotic-resistant bacterial infections, J. Clin. Transl. Res., 2015, vol. 1, no. 3, p. 140.
PubMed PubMed Central Google Scholar
Dysart, J.S. and Patterson, M.S., Characterization of photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro, Phys. Med. Biol., 2005, vol. 50, no. 11, p. 2597.
Article CAS PubMed Google Scholar
Jiang, Z., Shao, J., Yang, T., Wang, J., and Jia, L., Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy, J. Pharm. Biomed. Anal., 2014, vol. 87, pp. 98–104.
Article CAS PubMed Google Scholar
Athar, M., Mukhtar, H., and Bickers, D.R., Differential role of reactive oxygen intermediates in photofrin-I- and photofrin-II-mediated photoenhancement of lipid peroxidation in epidermal microsomal membranes, J. Invest. Dermatol., 1988, vol. 90, no. 5, pp. 652–657.
Article CAS PubMed Google Scholar
Torikai, E., Kageyama, Y., Kohno, E., Hirano, T., Koide, Y., Terakawa, S., and Nagano, A., Photodynamic therapy using talaporfin sodium for synovial membrane from rheumatoid arthritis patients and collagen-induced arthritis rats, Clin. Rheumatol., 2008, vol. 27, no. 6, pp. 751–761.
Teiten, M.H., Bezdetnaya, L., Morliere, P., Santus, R., and Guillemin, F., Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells, Br. J. Cancer, 2003, vol. 88, no. 1, pp. 146–152.
Article PubMed PubMed Central Google Scholar
Allison, R.R. and Sibata, C.H., Oncologic photodynamic therapy photosensitizers: A clinical review, Photodiagn. Photodyn. Ther., 2010, vol. 7, no. 2, pp. 61–75. https://doi.org/10.1016/j.pdpdt.2010.02.001
Sibata, C.H., Colussi, V.C., Oleinick, N.L., and Kinsella, T.J., Photodynamic therapy: A new concept in medical treatment, Braz. J. Med. Biol. Res., 2000, vol. 33, no. 8, pp. 869–880.
Article CAS PubMed Google Scholar
Resistance to Photodynamic Therapy in Cancer, Rapozzi, V. and Jori, G., Eds., Berlin: Springer, 2014, vol. 5.
Allison, R.R., Downie, G.H., Cuenca, R., Hu, X.-H., Childs, C.J.H., and Sibata, C.H., Photosensitizers in clinical PDT, Photodiagn. Photodyn. Ther., 2004, vol. 1, no. 1, pp. 27–42.
Boyle, R.W. and Dolphin, D., Structure and biodistribution relationships of photodynamic sensitizers, Photochem. Photobiol., 1996, vol. 64, no. 3, pp. 469–485.
Article CAS PubMed Google Scholar
Dayan, F.E. and Dayan, E.A., Porphyrins: One ring in the colors of life: A class of pigment molecules binds King George Iii, vampires and herbicides, Am. Sci., 2011, vol. 99, no. 3, pp. 236–243.
Allison, R.R., Mota, H.C., and Sibata, C.H., Clinical PD/PDT in North America: An historical review, Photodiagn. Photodyn. Ther., 2004, vol. 1, no. 4, pp. 263–277.
Dougherty, T.J., Studies on the structure of porphyrins contained in Photofrin® II, Photochem. Photobiol., 1987, vol. 46, no. 5, pp. 569–573.
Article CAS PubMed Google Scholar
Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., Moan, J., and Peng, Q., Photodynamic therapy, JNCI, J. Natl. Cancer Inst., 1998, vol. 90, no. 12, pp. 889–905. https://doi.org/10.1093/jnci/90.12.889
Article CAS PubMed Google Scholar
Dougherty, T.J., A brief history of clinical photodynamic therapy development at Roswell Park Cancer Institute, J. Clin. Laser Med. Surg., 1996, vol. 14, no. 5, pp. 219–221.
Article CAS PubMed Google Scholar
Macdonald, I.J. and Dougherty, T.J., Basic principles of photodynamic therapy, J. Porphyrins Phthalocyanines, 2001, vol. 5, no. 2, pp. 105–129.
Meserol, P.M., Method of applying photodynamic therapy to dermal lesion, US Patent 5489279, 1996.
Maydan, E., Nootheti, P.K., Goldman, M.P., Development of a keratoacanthoma after topical photodynamic therapy with 5-aminolevulinic acid, J. Drugs Dermatol., 2006, vol. 5, no. 8, pp. 804–806.
Hadjipanayis, C.G. and Stummer, W., 5-ALA and FDA approval for glioma surgery, J. Neurooncol., 2019, vol. 141, no. 3, pp. 479–486.
Article CAS PubMed PubMed Central Google Scholar
Rkein, A.M. and Ozog, D.M., Photodynamic therapy, Dermatol. Clin., 2014, vol. 32, no. 3, pp. 415–425. https://doi.org/10.1016/J.DET.2014.03.009
Article CAS PubMed Google Scholar
Sessler, J.L., Mody, T.D., Hemmi, G.W., and Lynch, V., Synthesis and structural characterization of lanthanide(III) texaphyrins, Inorg. Chem., 1993, vol. 32, no. 14, pp. 3175–3187.
Young, S.W., Woodburn, K.W., Wright, M., Mody, T.D., Fan, Q., Sessler, J.L., Dow, W.C., and Miller, R.A., Lutetium texaphyrin (PCI-0123): A near-infrared, water-soluble photosensitizer, Photochem. Photobiol., 1996, vol. 63, no. 6, pp. 892–897. https://doi.org/10.1111/j.1751-1097.1996.tb09647.x
Article CAS PubMed Google Scholar
Patel, H., Mick, R., Finlay, J., Zhu, T.C., Rickter, E., Cengel, K.A., Malkowicz, S.B., Hahn, S.M., and Bus-ch, T.M., Motexafin lutetium-photodynamic therapy of prostate cancer: Short- and long-term effects on prostate-specific antigen, Clin. Cancer Res., 2008, vol. 14, no. 15, pp. 4869–4876. https://doi.org/10.1158/1078-0432.CCR-08-0317
Article CAS PubMed PubMed Central Google Scholar
Ormond, A.B. and Freeman, H.S., Dye sensitizers for photodynamic therapy, Materials, 2013, vol. 6, no. 3, pp. 817–840.
Comments (0)