Collaborative Ocular Melanoma Study Group, Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report no. 26, Arch. Ophthalmol., 2005, vol. 123, pp. 1639–1643. https://doi.org/10.1001/archopht.123.12.1639
Smit, K.N., Jager, M.J., De Klein, A., and Kiliҫ, E., Uveal melanoma: Towards a molecular understanding, Prog. Retinal Eye Res., 2020, vol. 75, p. 100800. https://doi.org/10.1016/j.preteyeres.2019.100800
Souto, E.B., Zielinska, A., Luis, M., Carbone, C., Martins-Gomes, C., Souto, S.B., and Silva, A.M., Uveal melanoma: Physiopathology and new in situ-specific therapies, Cancer Chemother. Pharmacol., 2019, vol. 84, pp. 15–32. https://doi.org/10.1007/s00280-019-03860-z
Article CAS PubMed Google Scholar
Amaro, A., Gangemi, R., Piaggio, F., Angelini, G., Barisione, G., Ferrini, S., and Pfeffer, U., The biology of uveal melanoma, Cancer Metastasis Rev., 2017, vol. 36, pp. 109–140. https://doi.org/10.1007/s10555-017-9663-3
Article PubMed PubMed Central Google Scholar
Mouriaux, F., Zaniolo, K., Bergeron, M.-A., Weidmann, C., De La Fouchardière, A., Fournier, F., Droit, A., Morcos, M.W., Landreville, S., and Guérin, S.L., Effects of long-term serial passaging on the characteristics and properties of cell lines derived from uveal melanoma primary tumors, Invest. Ophthalmol. Visual Sci., 2016, vol. 57, p. 5288. https://doi.org/10.1167/iovs.16-19317
Angi, M., Versluis, M., and Kalirai, H., Culturing uveal melanoma cells, Ocul. Oncol. Pathol., 2015, vol. 1, pp. 126–132. https://doi.org/10.1159/000370150
Article PubMed PubMed Central Google Scholar
Aughton, K., Shahidipour, H., Djirackor, L., Coupland, S.E., and Kalirai, H., Characterization of uveal melanoma cell lines and primary tumor samples in 3D culture, Transl. Vision Sci. Tech., 2020, vol. 9, p. 39. https://doi.org/10.1167/tvst.9.7.39
Saakyan, S.V., Tsygankov, A.Yu., Moiseeva, N.I., Karamysheva, A.F., and Garri, D.D., Assessment of the chemosensitivity of uveal melanoma cells ex vivo, Bull. Exp. Biol. Med., 2020, vol. 170, pp. 142–147. https://doi.org/10.1007/s10517-020-05020-3
Article CAS PubMed Google Scholar
Jager, M.J., Shields, C.L., Cebulla, C.M., Abdel-Rahman, M.H., Grossniklaus, H.E., Stern, M.-H., Carvajal, R.D., Belfort, R.N., Jia, R., Shields, J.A., et al., Uveal melanoma, Nat. Rev. Dis. Primers, 2020, vol. 6, p. 24. https://doi.org/10.1038/s41572-020-0158-0
Bertrand, J.U., Steingrimsson, E., Jouenne, F., Bressac-de Paillerets, B., and Larue, L., Melanoma risk and melanocyte biology, Acta Derm.-Venereol., 2020, vol. 100, p. adv00139. https://doi.org/10.2340/00015555-3494
Article CAS PubMed Google Scholar
Trocmé, E., Mougiakakos, D., Johansson, C.C., All-Eriksson, C., Economou, M.A., Larsson, O., Seregard, S., Kiessling, R., and Lin, Y., Nuclear HER3 is associated with favorable overall survival in uveal melanoma, Int. J. Cancer, 2012, vol. 130, pp. 1120–1127. https://doi.org/10.1002/ijc.26118
Article CAS PubMed Google Scholar
Amaro, A., Mirisola, V., Angelini, G., Musso, A., Tosetti, F., Esposito, A.I., Perri, P., Lanza, F., Nasciuti, F., Mosci, C., et al., Evidence of epidermal growth factor receptor expression in uveal melanoma: Inhibition of epidermal growth factor-mediated signalling by gefitinib and cetuximab triggered antibody-dependent cellular cytotoxicity, Eur. J. Cancer, 2013, vol. 49, pp. 3353–3365. https://doi.org/10.1016/j.ejca.2013.06.011
Article CAS PubMed Google Scholar
Lai, K., Sharma, V., Jager, M.J., Conway, R.M., and Madigan, M.C., Expression and distribution of MUC18 in human uveal melanoma, Virchows Arch., 2007, vol. 451, pp. 967–976. https://doi.org/10.1007/s00428-007-0498-0
Article CAS PubMed Google Scholar
Wang, Z., Xu, Q., Zhang, N., Du, X., Xu, G., and Yan, X., CD146, from a melanoma cell adhesion molecule to a signaling receptor, Signal Transduction Targeted Ther., 2020, vol. 5, p. 148. https://doi.org/10.1038/s41392-020-00259-8
Grieco, C., Kohl, F.R., and Kohler, B., Ultrafast radical photogeneration pathways in eumelanin, Photochem. Photobiol., 2023, vol. 99, pp. 680–692. https://doi.org/10.1111/php.13731
Article CAS PubMed Google Scholar
Buszman, E. and Rozanska, R., Interaction of thioridazine with ocular melanin in vitro, Acta Pol. Pharm., 2003, vol. 60, pp. 257–262.
Del Marmol, V., Ito, S., Jackson, I., Vachtenheim, J., Berr, P., Ghanem, G., Morandini, R., Wakamatsu, K., and Huez, G., TRP-1 expression correlates with eu-melanogenesis in human pigment cells in culture, FEBS Lett., 1993, vol. 327, pp. 307–310. https://doi.org/10.1016/0014-5793(93)81010-W
Article CAS PubMed Google Scholar
Antunes, L.C.M., Cartell, A., de Farias, C.B., Bakos, R.M., Roesler, R., and Schwartsmann, G., Tropomyosin-related kinase receptor and neurotrophin expression in cutaneous melanoma is associated with a poor prognosis and decreased survival, Oncology, 2019, vol. 97, pp. 26–37. https://doi.org/10.1159/000499384
Article CAS PubMed Google Scholar
Zhang, R., Chen, X., Chen, S., Tang, J., Chen, F., Lin, Y., Reinach, P.S., Yan, X., Tu, L., Duan, H., et al., Inhibition of CD146 lessens uveal melanoma progression through reducing angiogenesis and vasculogenic mimicry, Cell. Oncol., 2022, vol. 45, pp. 557–572. https://doi.org/10.1007/s13402-022-00682-9
Kuphal, S. and Bosserhoff, A.K., E-cadherin cell–cell communication in melanogenesis and during development of malignant melanoma, Arch. Biochem. Biophys., 2012, vol. 524, pp. 43–47. https://doi.org/10.1016/j.abb.2011.10.020
Article CAS PubMed Google Scholar
Lade-Keller, J., Riber-Hansen, R., Guldberg, P., Schmidt, H., Hamilton-Dutoit, S.J., and Steiniche, T., E- to N-cadherin switch in melanoma is associated with decreased expression of phosphatase and tensin homolog and cancer progression, Br. J. Dermatol., 2013, vol. 169, pp. 618–628. https://doi.org/10.1111/bjd.12426
Article CAS PubMed Google Scholar
Delgado-Bellido, D., Zamudio-Martínez, E., Fernández-Cortés, M., Herrera-Campos, A.B., Olmedo-Pelayo, J., Perez, C.J., Expósito, J., De Álava, E., Amaral, A.T., Valle, F.O., et al., VE-cadherin modulates β-catenin/TCF-4 to enhance vasculogenic mimicry, Cell Death Dis., 2023, vol. 14, p. 135. https://doi.org/10.1038/s41419-023-05666-7
Article CAS PubMed PubMed Central Google Scholar
Croce, M., Ferrini, S., Pfeffer, U., and Gangemi, R., Targeted therapy of uveal melanoma: Recent failures and new perspectives, Cancers, 2019, vol. 11, p. 846. https://doi.org/10.3390/cancers11060846
Article CAS PubMed PubMed Central Google Scholar
Kassumeh, S., Arrow, S., Kafka, A., Luft, N., Priglinger, S.G., Wolf, A., Eibl-Lindner, K., and Wertheimer, C.M., Pharmacological drug screening to inhibit uveal melanoma metastatic cells either via EGF-R, MAPK, mTOR or PI3K, Int. J. Ophthalmol., 2022, vol. 15, p. 1569.
Article PubMed PubMed Central Google Scholar
Sigismund, S., Avanzato, D., and Lanzetti, L., Emerging functions of the EGFR in cancer, Mol. Oncol., 2018, vol. 12, pp. 3–20. https://doi.org/10.1002/1878-0261.12155
Forsberg, E.M.V., Lindberg, M.F., Jespersen, H., Alsén, S., Bagge, R.O., Donia, M., Svane, I.M., Nilsson, O., Ny, L., Nilsson, L.M., et al., HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy–resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice, Cancer Res., 2019, vol. 79, pp. 899–904. https://doi.org/10.1158/0008-5472.CAN-18-3158
Article CAS PubMed Google Scholar
Burgess, B.L., Rao, N.P., Eskin, A., Nelson, S.F., and McCannel, T.A., Characterization of three cell lines derived from fine needle biopsy of choroidal melanoma with metastatic outcome, Mol. Vision, 2011, vol. 17, pp. 607–615.
Pardo, M., Piñeiro, A., De La Fuente, M., García, A., Prabhakar, S., Zitzmann, N., Dwek, R.A., Sánchez-Salorio, M., Domínguez, F., and Capeans, C., Abnormal cell cycle regulation in primary human uveal melanoma cultures, J. Cell. Biochem., 2004, vol. 93, pp. 708–720. https://doi.org/10.1002/jcb.20230
Comments (0)