da Cunha Santos, G., Shepherd, F.A., and Tsao, M.S., EGFR mutations and lung cancer, Annu. Rev. Pathol., 2011, vol. 6, pp. 49–69. https://doi.org/10.1146/annurev-pathol-011110-130206
Article CAS PubMed Google Scholar
Tan, C.S., Gilligan, D., and Pacey, S., Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer, Lancet Oncol., 2015, vol. 16, pp. e447–e459. https://doi.org/10.1016/s1470-2045(15)00246-6
Article CAS PubMed Google Scholar
Singh, M. and Jadhav, H.R., Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors, Drug Discovery Today, 2018, vol. 23, pp. 745–753. https://doi.org/10.1016/j.drudis.2017.10.004
Article CAS PubMed Google Scholar
Wang, Z.F., Ren, S.X., Li, W., and Gao, G.H., Frequency of the acquired resistant mutation T790 M in non-small cell lung cancer patients with active exon 19Del and exon 21 L858R: A systematic review and meta-analysis, BMC Cancer, 2018, vol. 18, p. 148. https://doi.org/10.1186/s12885-018-4075-5
Article CAS PubMed PubMed Central Google Scholar
Liang, H., Pan, Z., Wang, W., Guo, C., Chen, D., et al., The alteration of T790M between 19 del and L858R in NSCLC in the course of EGFR-TKIs therapy: A literature-based pooled analysis, J. Thorac. Dis., 2018, vol. 10, pp. 2311–2320. https://doi.org/10.21037/jtd.2018.03.150
Article PubMed PubMed Central Google Scholar
Liang, H., Li, C., Zhao, Y., Zhao, S., Huang, J., et al., Concomitant mutations in EGFR 19Del/L858R mutation and their association with response to EGFR-TKIs in NSCLC patients, Cancer Manage. Res., 2020, vol. 12, pp. 8653–8662. https://doi.org/10.2147/cmar.S255967
Ochi, N., Takeyama, M., Miyake, N., Fuchigami, M., Yamane, H., et al., The complexity of EGFR exon 19 deletion and L858R mutant cells as assessed by proteomics, transcriptomics, and metabolomics, Exp. Cell Res., 2023, vol. 424, p. 113503. https://doi.org/10.1016/j.yexcr.2023.113503
Article CAS PubMed Google Scholar
Comprehensive molecular portraits of human breast tumours, Nature, 2012, vol. 490, pp. 61–70. https://doi.org/10.1038/nature11412
Mermel, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Beroukhim, R., et al., GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers, Genome Biol., 2011, vol. 12, p. R41. https://doi.org/10.1186/gb-2011-12-4-r41
Article CAS PubMed PubMed Central Google Scholar
Anders, S. and Huber, W., Differential expression analysis for sequence count data, Genome Biol., 2010, vol. 11, p. R106. https://doi.org/10.1186/gb-2010-11-10-r106
Article CAS PubMed PubMed Central Google Scholar
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 15545–15550. https://doi.org/10.1073/pnas.0506580102
Article CAS PubMed PubMed Central Google Scholar
Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., et al., TI-MER2.0 for analysis of tumor-infiltrating immune cells, Nucleic Acids Res., 2020, vol. 48, pp. W509–W514. https://doi.org/10.1093/nar/gkaa407
Article CAS PubMed PubMed Central Google Scholar
Hernández, J., Bechara, E., Schlesinger, D., Delgado, J., Serrano, L., et al., Tumor suppressor properties of the splicing regulatory factor RBM10, RNA Biol., 2016, vol. 13, pp. 466–472. https://doi.org/10.1080/15476286.2016.1144004
Article PubMed PubMed Central Google Scholar
Wang, K., Bacon, M.L., Tessier, J.J., Rintala-Maki, N.D., Tang, V., et al., RBM10 modulates apoptosis and influences TNF-α gene expression, J. Cell Death, 2012, vol. 5, pp. 1–19. https://doi.org/10.4137/jcd.S9073
Article CAS PubMed PubMed Central Google Scholar
Zhao, J., Sun, Y., Huang, Y., Song, F., Huang, Z., et al., Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing, Sci. Rep., 2017, vol. 7, p. 40488. https://doi.org/10.1038/srep40488
Article CAS PubMed PubMed Central Google Scholar
Zeng, Q., Sun, S., Li, Y., Li, X., Li, Z., et al., Identification of therapeutic targets and prognostic biomarkers among CXC chemokines in the renal cell carcinoma microenvironment, Front. Oncol., 2019, vol. 9, p. 1555. https://doi.org/10.3389/fonc.2019.01555
Shi, S., Ye, S., Mao, J., Ru, Y., Lu, Y., et al., CMA1 is potent prognostic marker and associates with immune infiltration in gastric cancer, Autoimmunity, 2020, vol. 53, pp. 210–217. https://doi.org/10.1080/08916934.2020.1735371
Article CAS PubMed Google Scholar
Li, T., Pang, X., Wang, J., Wang, S., Guo, Y., et al., Exploration of the tumor-suppressive immune microenvironment by integrated analysis in EGFR-mutant lung adenocarcinoma, Front. Oncol., 2021, vol. 11, p. 591922. https://doi.org/10.3389/fonc.2021.591922
Article CAS PubMed PubMed Central Google Scholar
Wang, C., Liang, H., Lin, C., Li, F., Xie, G., et al., Molecular subtyping and prognostic assessment based on tumor mutation burden in patients with lung adenocarcinomas, Int. J. Mol. Sci., 2019, vol. 20, p. 4251. https://doi.org/10.3390/ijms20174251
Article CAS PubMed PubMed Central Google Scholar
Spiliopoulou, P., Yang, S.Y.C., Bruce, J.P., Wang, B.X., Berman, H.K., et al., All is not lost: Learning from 9p21 loss in cancer, Trends Immunol., 2022, vol. 43, pp. 379–390. https://doi.org/10.1016/j.it.2022.03.003
Article CAS PubMed Google Scholar
Eichenauer, T., Simmendinger, L., Kluth, M., Chirico, V., Luebke, A.M., et al., Chromosomal deletion of 9p21 is linked to poor patient prognosis in papillary and clear cell kidney cancer, Urol. Oncol., 2020, vol. 38, pp. 605.e601–605.e608. https://doi.org/10.1016/j.urolonc.2020.02.022
Alentorn, A., Dehais, C., Ducray, F., Carpentier, C., Mokhtari, K., et al., Allelic loss of 9p21.3 is a prognostic factor in 1p/19q codeleted anaplastic gliomas, Neurology, 2015, vol. 85, pp. 1325–1331. https://doi.org/10.1212/wnl.0000000000002014
Article CAS PubMed PubMed Central Google Scholar
Ghobadi, N., Mehramiz, M., ShahidSales, S., Rezaei Brojerdi, A., Anvari, K., et al., A genetic variant in C-DKN2A/2B locus was associated with poor prognosis in patients with esophageal squamous cell carcinoma, J. Cell. Physiol., 2019, vol. 234, pp. 5070–5076. https://doi.org/10.1002/jcp.27310
Article CAS PubMed Google Scholar
Xia, Y., Liu, Y., Yang, C., Simeone, D.M., Sun, T.T., et al., Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis, Nat. Commun., 2021, vol. 12, p. 2047. https://doi.org/10.1038/s41467-021-22327-5
Article CAS PubMed PubMed Central Google Scholar
Hustinx, S.R., Leoni, L.M., Yeo, C.J., Brown, P.N., Goggins, M., et al., Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: Evidence of homozygous deletion in a noninvasive precursor lesion, Mod. Pathol., 2005, vol. 18, pp. 959–963. https://doi.org/10.1038/modpathol.3800377
Comments (0)