Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J., Meester, R.G.S., Barzi, A., and Jemal, A., Colorectal cancer statistics, 2017, Ca-Cancer J. Clin., 2017, vol. 67, no. 3, pp. 177–193.https://doi.org/10.3322/caac.21395
Metwally, I.S., Shetiwy, M., Elalfy, A.M., Abouzid, A., Saleh, S.S., and Hamdy, M., Epidemiology and survival of colon cancer among Egyptians: A retrospective study, J. Coloproctol., 2017, vol. 38.https://doi.org/10.1016/j.jcol.2017.09.418
Williams, C.D., Grady, W.M., and Zullig, L.L., Use of NCCN guidelines, other guidelines, and biomarkers for colorectal cancer screening, J. Natl. Compr. Cancer Network, 2016, vol. 14, no. 11, pp. 1479–1485.https://doi.org/10.6004/jnccn.2016.0154
Wang, N., Lu, Y., Khankari, N.K., Long, J., Li, H.L., Gao, J., Gao, Y.T., Xiang, Y.B., Shu, X.O., and Zheng, W., Evaluation of genetic variants in association with colorectal cancer risk and survival in Asians, Int. J. Cancer, 2017, vol. 141, no. 6, pp. 1130–1139.https://doi.org/10.1002/ijc.30812
Article CAS PubMed PubMed Central Google Scholar
Fearon, E.R. and Vogelstein, B.A., Genetic model for colorectal tumorigenesis, Cell, 1990, vol. 61, no. 5, pp. 759–767. https://doi.org/10.1016/0092-8674(90)90186-i
Slattery, M.L., Herrick, J.S., Pellatt, D.F., Stev-ens, J.R., Mullany, L.E., Wolff, E., Hoffman, M.D., Samowitz, W.S., and Wolff, R.K., MicroRNA profiles in colorectal carcinomas, adenomas, and normal colonic mucosa: Variations in miRNA expression and disease progression, Carcinogenesis, 2016, vol. 37, no. 3, pp. 245–261.https://doi.org/10.1093/carcin/bgv249
Article CAS PubMed PubMed Central Google Scholar
Bartley, A.N., Yao, H., Barkoh, B.A., Ivan, C., Mishra, B.M., Rashid, A., Calin, G.A., Luthra, R., and Hamilton, S.R., Complex patterns of altered mi-croRNA expression during the adenoma-adenocarcinoma sequence for microsatellite-stable colorectal cancer, Clin. Cancer Res., 2011, vol. 17, no. 23, pp. 7283–7293.https://doi.org/10.1158/1078-0432.CCR-11-1452
Article CAS PubMed PubMed Central Google Scholar
Kinzler, K.W. and Vogelstein, B., Lessons from hereditary colorectal cancer, Cell, 1996, vol. 87, no. 2, pp. 159–170.https://doi.org/10.1016/S0092-8674(00)81333-1
Article CAS PubMed Google Scholar
Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al., Comprehensive molecular characterization of human colon and rectal cancer, Nature, 2012, vol. 487, no. 7407, pp. 330–337.https://doi.org/10.1038/nature11252
Shastri, Y.M., Loitsch, S., Hoepffner, N., Povse, N., Hanisch, E., Rösch, W., Mössner, J., and Stein, J.M., Comparison of an established simple office-based immunological FOBT with fecal tumor pyruvate kinase type M2 (M2-PK) for colorectal cancer screening: Prospective multicenter study, Am. J. Gastroenterol., 2008, vol. 103, no. 6, pp. 1496–1504. https://doi.org/10.1111/j.1572-0241.2008.01824
Ahlquist, D.A., Molecular detection of colorectal neoplasia, Gastroenterology, 2010, vol. 138, no. 6, pp. 2127–2139.https://doi.org/10.1053/j.gastro.2010.01.055
Article CAS PubMed Google Scholar
Takai, T., Kanaoka, S., Yoshida, K., Hamaya, Y., Ikuma, M., Miura, N., Sugimura, H., Kajimura, M., and Hishida, A., Fecal cyclooxygenase 2 plus matrix metalloproteinase 7 mRNA assays as a marker for colorectal cancer screening, Cancer Epidemiol., Biomarkers Prev., 2009, vol. 18, no. 6, pp. 1888–1893.https://doi.org/10.1158/1055-9965.EPI-08-0937
Article CAS PubMed Google Scholar
Wu, C.W., Ng, S.S., Dong, Y.J., Ng, S.C., Leung, W.W., Lee, C.W., Wong, Y.N., Chan, F.K., Yu, J., and Sung, J.J., Detection of miR-92a and miR‑21 in stool samples as potential screening biomarkers for colorectal cancer and polyps, Gut, 2012, vol. 61, no. 5, pp. 739–745. https://doi.org/10.1136/gut.2011.239236
Article CAS PubMed Google Scholar
Ponting, C.P., Oliver, P.L., and Reik, W., Evolution and functions of long noncoding RNAs, Cell, 2009, vol. 136, no. 4, pp. 629–641.https://doi.org/10.1016/j.cell.2009.02.006
Article CAS PubMed Google Scholar
Hu, G., Niu, F., Humburg, B.A., Liao, K., Bendi, S., Callen, S., Fox, H.S., and Buch, S., Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis, OncoTarget, 2018, vol. 9, no. 26, pp. 18648–18663. https://doi.org/10.18632/oncotarget.24307
Article PubMed PubMed Central Google Scholar
Wang, K.C. and Chang, H.Y., Molecular mechanisms of long noncoding RNAs, Mol. Cell, 2011, vol. 43, no. 6, pp. 904–914.https://doi.org/10.1016/j.molcel.2011.08.018
Article CAS PubMed PubMed Central Google Scholar
Akhade, V.S., Pal, D., and Kanduri, C., Long noncoding RNA: Genome organization and mechanism of action, Adv. Exp. Med. Biol., 2017, vol. 1008, pp. 47–74.https://doi.org/10.1007/978-981-10-5203-32
Article CAS PubMed Google Scholar
Deans, C. and Maggert, K.A., What do you mean, “epigenetic”?, Genetics, 2015, vol. 199, no. 4, pp. 887–896.https://doi.org/10.1534/genetics.114.173492
Article CAS PubMed PubMed Central Google Scholar
Peterson, C.L. and Workman, J.L., Promoter targeting and chromatin remodeling by the SWI/SNF complex, Curr. Opin. Genet. Dev., 2000, vol. 10, no. 2, pp. 187–192.https://doi.org/10.1016/S0959-437X(00)00068-X
Article CAS PubMed Google Scholar
Wu, Q., Lian, J.B., Stein, J.L., Stein, G.S., Nickerson, J.A., and Imbalzano, A.N., The BRG1 AT-Pase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer, Epigenomics, 2017, vol. 9, no. 6, pp. 919–931.https://doi.org/10.2217/epi-2017-0034
Article CAS PubMed PubMed Central Google Scholar
Tang, Y., Wang, J., Lian, Y., Fan, C., Zhang, P., Wu, Y., Li, X., Xiong, F., Li, X., Li, G., Xiong, W., and Zeng, Z., Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer, Mol. Cancer, 2017, vol. 16, no. 1, p. 42.https://doi.org/10.1186/s12943-017-0612-0
Article CAS PubMed PubMed Central Google Scholar
Lee, R.S. and Roberts, C.W., Linking the SWI/SNF complex to prostate cancer, Nat. Genet., 2013, vol. 45, no. 11, pp. 1268–1269.https://doi.org/10.1038/ng.2805
Article CAS PubMed Google Scholar
Chen, Z., Gao, Y., Yao, L., Liu, Y., Huang, L., Yan, Z., Zhao, W., Zhu, P., and Weng, H., LncFZD6 initiates Wnt/β-catenin and liver TIC self-renewal through BRG1-mediated FZD6 transcriptional activation, Oncogene, 2018, vol. 37, no. 23, pp. 3098–3112.https://doi.org/10.1038/s41388-018-0203-6
Article CAS PubMed PubMed Central Google Scholar
Wang, Y., He, L., Du, Y., Zhu, P., Huang, G., Luo, J., Yan, X., Ye, B., Li, C., Xia, P., Zhang, G., Tian, Y., Chen, R., and Fan, Z., The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling, Cell Stem Cell, 2015, vol. 16, no. 4, pp. 413–425.https://doi.org/10.1016/j.stem.2015.03.003
Article CAS PubMed Google Scholar
Deng, J., Mueller, M., Geng, T., Shen, Y., Liu, Y., Hou, P., Mamillapalli, R., Taylor, H.S., Paidas, M., and Huang, Y., Correction: H19 lncRNA alters methylation and expression of Hnf4α in the liver of metformin-exposed fetuses, Cell Death Dis., 2017, vol. 8, no. 12, p. e3175.https://doi.org/10.1038/s41419-019-1812-x
Article PubMed PubMed Central Google Scholar
Arab, K., Park, Y.J., Lindroth, A.M., Schäfer, A., Oakes, C., Weichenhan, D., Lukanova, A., Lundin, E., Risch, A., Meister, M., Dienemann, H., Dyckhoff, G., Herold-Mende, C., Grummt, I., Niehrs, C., and Plass, C., Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A, Mol. Cell, 2014, vol. 55, no. 4, pp. 604–614.https://doi.org/10.1016/j.molcel.2014.06.031
Article CAS PubMed Google Scholar
Jain, A.K., Xi, Y., McCarthy, R., Allton, K., Akdemir, K.C., Patel, L.R., Aronow, B., Lin, C., Li, W., Yang, L., and Barton, M.C., LncPRESS1 is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56, Mol. Cell, 2016, vol. 64, no. 5, pp. 967–981.https://doi.org/10.1016/j.molcel.2016.10.039
Article CAS PubMed PubMed Central Google Scholar
Xu, M., Chen, X., Lin, K., Zeng, K., Liu, X., Pan, B., Xu, X., Xu, T., Hu, X., Sun, L., He, B., Pan, Y., Sun, H., and Wang, S., The long noncoding RNA SN-HG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p, Mol. Cancer, 2018, vol. 17, no. 1, p. 141.https://doi.org/10.1186/s12943-018-0894-x
Comments (0)