Hsu, S.K., Chiu, C.C., Dahms, H.U., Chou, C.K., Cheng, C.M., Chang, W.T., Cheng, K.C., Wang, H.D., and Lin, I.L., Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells, Int. J. Mol. Sci., 2019, vol. 20, no. 10, p. 2518.
Article CAS PubMed PubMed Central Google Scholar
Coleman, O.I. and Haller, D., ER stress and the upr in shaping intestinal tissue homeostasis and immunity, Front. Immunol., 2019, vol. 10, p. 2825.
Article CAS PubMed PubMed Central Google Scholar
Frakes, A.E. and Dillin, A., The UPR(ER): Sensor and coordinator of organismal homeostasis, Mol. Cell, 2017, vol. 66, no. 6, pp. 761–771.
Article CAS PubMed Google Scholar
Kopp, M.C., Larburu, N., Durairaj, V., Adams, C.J., and Ali, M.M.U., UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor, Nat. Struct. Mol. Biol., 2019, vol. 26, no. 11, pp. 1053–1062.
Article CAS PubMed PubMed Central Google Scholar
Wang, J., Lee, J., Liem, D., and Ping, P., HSPA5 gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum, Gene, 2017, vol. 618, pp. 14–23.
Article CAS PubMed PubMed Central Google Scholar
Pobre, K.F.R., Poet, G.J., and Hendershot, L.M., The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends, J. Biol. Chem., 2019, vol. 294, no. 6, pp. 2098–2108.
Article CAS PubMed Google Scholar
Lewy, T.G., Grabowski, J.M., and Bloom, M.E., BiP: Master regulator of the unfolded protein response and crucial factor in flavivirus biology, Yale J. Biol. Med., 2017, vol. 90, no. 2, pp. 291–300.
CAS PubMed PubMed Central Google Scholar
Cerezo, M., Benhida, R., and Rocchi, S., Targeting BIP to induce endoplasmic reticulum stress and cancer cell death, Oncoscience, 2016, vol. 3, nos. 11–12, pp. 306–307.
Article PubMed PubMed Central Google Scholar
Imai, H., Shimizu, K., Kawashima, O., Endoh, H., Imaizumi, K., Goto, Y., Kamiyoshihara, M., Sugano, M., Yamamoto, R., Tanaka, S., Fujita, A., Kogure, Y., Seki, Y., Mogi, A., Oyama, T., Minato, K., Asao, T., and Kaira, K., Clinical significance of various drug-sensitivity markers in patients with surgically resected pulmonary pleomorphic carcinoma, Cancers, 2019, vol. 11, no. 11, p. 1636.
Article CAS PubMed PubMed Central Google Scholar
Yang, L., Yang, S., Liu, J., Wang, X., Ji, J., Cao, Y., Lu, K., Wang, J., and Gao, Y., Expression of GRP78 predicts taxane-based therapeutic resistance and recurrence of human gastric cancer, Exp. Mol. Pathol., 2014, vol. 96, no. 2, pp. 235–241.
Article CAS PubMed Google Scholar
Gray, M.J., Mhawech-Fauceglia, P., Yoo, E., Yang, W., Wu, E., Lee, A.S., and Lin, Y.G., AKT inhibition mitigates GRP78 (glucose-regulated protein) expression and contribution to chemoresistance in endometrial cancers, Int. J. Cancer, 2013, vol. 133, no. 1, pp. 21–30.
Article CAS PubMed PubMed Central Google Scholar
Marei, H., Tsai, W.K., Kee, Y.S., Ruiz, K., He, J., Cox, C., Sun, T., Penikalapati, S., Dwivedi, P., Choi, M., Kan, D., Saenz-Lopez, P., Dorighi, K., Zhang, P., Kschonsak, Y.T., Kljavin, N., Amin, D., Kim, I., Mancini, A.G., Nguyen, T., Wang, C., Janezic, E., Doan, A., Mai, E., Xi, H., Gu, C., Heinlein, M., Biehs, B., Wu, J., Lehoux, I., Harris, S., Comps-Agrar, L., Seshasayee, D., de Sauvage, F.J., Grimmer, M., Li, J., Agard, N.J., and de Sousa, E.M.F., Antibody targeting of E3 ubiquitin ligases for receptor degradation, Nature, 2022, vol. 610, no. 7930, pp. 182–189.
Article CAS PubMed PubMed Central Google Scholar
Zheng, N. and Shabek, N., Ubiquitin ligases: Structure, function, and regulation, Annu. Rev. Biochem., 2017, vol. 86, pp. 129–157.
Article CAS PubMed Google Scholar
Li, X., Pu, W., Zheng, Q., Ai, M., Chen, S., and Peng, Y., Proteolysis-targeting chimeras (PROTACs) in cancer therapy, Mol. Cancer, 2022, vol. 21, no. 1, p. 99.
Article CAS PubMed PubMed Central Google Scholar
Koren, I., Timms, R.T., Kula, T., Xu, Q., Li, M.Z., and Elledge, S.J., The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons, Cell, 2018, vol. 173, no. 7, pp. 1622–1635 e14.
Baird, L. and Yamamoto, M., The molecular mechanisms regulating the KEAP1-NRF2 pathway, Mol. Cell. Biol., 2020, vol. 40, no. 13, p. e00099-20.
Article CAS PubMed PubMed Central Google Scholar
Gong, X., Du, D., Deng, Y., Zhou, Y., Sun, L., and Yuan, S., The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer, Invest. New Drugs, 2020, vol. 38, no. 2, pp. 515–524.
Article CAS PubMed Google Scholar
Hunkeler, M., Jin, C.Y., Ma, M.W., Monda, J.K., Overwijn, D., Bennett, E.J., and Fischer, E.S., Solenoid architecture of HUWE1 contributes to ligase activity and substrate recognition, Mol. Cell, 2021, vol. 81, no. 17, pp. 3468–3480.
Blondelle, J., Biju, A., and Lange, S., The role of Cullin-RING ligases in striated muscle development, function, and disease, Int. J. Mol. Sci., 2020, vol. 21, no. 21, p. 7936.
Article CAS PubMed PubMed Central Google Scholar
Berk, A.J., Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus, Oncogene, 2005, vol. 24, no. 52, pp. 7673–7685.
Article CAS PubMed Google Scholar
Jang, S.M., Redon, C.E., and Aladjem, M.I., Chromatin-bound Cullin-ring ligases: Regulatory roles in DNA replication and potential targeting for cancer therapy, Front. Mol. Biosci., 2018, vol. 5, p. 19.
Article PubMed PubMed Central Google Scholar
Thirunavukarasou, A., Singh, P., Govindarajalu, G., Bandi, V., and Baluchamy, S., E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation, Mol. Cell. Biochem., 2014, vol. 390, nos. 1–2, pp. 93–100.
Article CAS PubMed Google Scholar
Fuzesi-Levi, M.G., Fainer, I., Ivanov Enchev, R., Ben-Nissan, G., Levin, Y., Kupervaser, M., Friedlander, G., Salame, T.M., Nevo, R., Peter, M., and Sharon, M., CSNAP, the smallest CSN subunit, modulates proteostasis through Cullin-RING ubiquitin ligases, Cell Death Differ., 2020, vol. 27, no. 3, pp. 984–998.
Article CAS PubMed Google Scholar
Yan, Y., Zhang, X., and Legerski, R.J., Artemis interacts with the Cul4A-DDB1DDB2 ubiquitin E3 ligase and regulates degradation of the CDK inhibitor p27, Cell Cycle, 2011, vol. 10, no. 23, pp. 4098–4109.
Article CAS PubMed PubMed Central Google Scholar
Gao, F., Fan, Y.M., Zhou, B.L., Guo, W.H., Jiang, X.J., Shi, J., and Ren, C.P., The functions and properties of cullin-5, a potential therapeutic target for cancers, Am. J. Transl. Res., 2020, vol. 12, no. 2, pp. 618–632.
CAS PubMed PubMed Central Google Scholar
Ehrlich, E.S., Wang, T., Luo, K., Xiao, Z., Niewiadomska, A.M., Martinez, T., Xu, W., Neckers, L., and Yu, X.F., Regulation of Hsp90 client proteins by a Cullin5-RING E3 ubiquitin ligase, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 48, pp. 20330–20335.
Article CAS PubMed PubMed Central Google Scholar
Samant, R.S., Clarke, P.A., and Workman, P., E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 18, pp. 6834–6839.
Article CAS PubMed PubMed Central Google Scholar
Talamantez-Lyburn, S., Brown, P., Hondrogian-nis, N., Ratliff, J., Wicks, S.L., Nana, N., Zheng, Z., Rosenzweig, Z., Hondrogiannis, E., Devadas, M.S., and Ehrlich, E.S., Gold nanoparticles loaded with cullin-5 DNA increase sensitivity to 17-AAG in cullin-5 deficient breast cancer cells, Int. J. Pharm. (Amsterdam, Neth.), 2019, vol. 564, pp. 281–292.
Jia, Y., Kodumudi, K.N., Ramamoorthi, G., Basu, A., Snyder, C., Wiener, D., Pilon-Thomas, S., Grover, P., Zhang, H., Greene, M.I., Mo, Q., Tong, Z., Chen, Y.Z., Costa, R.L.B., Han, H., Lee, C., Soliman, H., Conejo-Garcia, J.R., Koski, G., and Czerniecki, B.J., Th1 cytokine interferon gamma improves response in HER2 breast cancer by modulating the ubiquitin proteasomal pathway, Mol. Ther., 2021, vol. 29, no. 4, pp. 1541–1556.
Comments (0)