Genome-wide identification of cold shock proteins (CSPs) in sweet cherry (Prunus avium L.) and exploring the differential responses of PavCSP1 and PavCSP3 to low temperature and salt stress

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–208

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaikam V, Karlson D (2008) Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ 31:995–1006

Article  CAS  PubMed  Google Scholar 

Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi MJ, Park YR, Park SJ, Kang H (2015) Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions. Plant Physiol Biochem 96:132–140

Article  CAS  PubMed  Google Scholar 

Chou KC, Shen HB (2008) Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

Article  CAS  PubMed  Google Scholar 

Esti M, Cinquanta L, Sinesio F, Moneta E, Di Matteo M (2002) Physicochemical and sensory fruit characteristics of two sweet cherry cultivars after cool storage. Food Chem 76:399–405

Article  CAS  Google Scholar 

Gao H, Yu C, Liu R, Li X, Huang H, Wang X, Zhang C, Jiang N, Li X, Cheng S et al (2022) The glutathione S-Transferase PtGSTF1 improves Biomass Production and Salt Tolerance through regulating Xylem Cell Proliferation, Ion Homeostasis and reactive oxygen species scavenging in Poplar. Int J Mol Sci 23

Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290

Article  CAS  PubMed  Google Scholar 

Huang F, Tang J, Hou X (2016) Molecular cloning and characterization of BcCSP1, a pak-choi (Brassica rapa ssp. chinensis) cold shock protein gene highly co-expressed under ABA and cold stimulation. Acta Physiol Plant 38:47

Article  Google Scholar 

Huang F, Wang J, Tang J, Hou X (2019) Identification, evolution and functional inference on the cold-shock domain protein family in pak-choi (Brassica rapa ssp. chinensis) and Chinese cabbage (Brassica rapa ssp. pekinensis). J Plant Interact 14:232–241

Article  CAS  Google Scholar 

Huang F, Wang J, Duan W, Hou X (2020) Identification and Expression Analysis of Cold Shock Protein 3 (BcCSP3) in Non-Heading Chinese Cabbage (Brassica rapa ssp. chinensis). Plants (Basel) 9

Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131:12–15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277:35248–35256

Article  CAS  PubMed  Google Scholar 

Kim JS, Park SJ, Kwak KJ, Kim YO, Kim JY, Song J, Jang B, Jung CH, Kang H (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516

Article  CAS  PubMed  Google Scholar 

Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

Article  CAS  PubMed  Google Scholar 

Kim MH, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284:23454–23460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim MH, Sato S, Sasaki K, Saburi W, Matsui H, Imai R (2013) COLD SHOCK DOMAIN PROTEIN 3 is involved in salt and drought stress tolerance in Arabidopsis. FEBS Open Bio 3:438–442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SY, Kim JS, Cho W, Jun KM, Du X, Kim KD, Kim YK, Lee GS (2021) A Cold-shock protein from the South Pole-Dwelling Soil Bacterium Arthrobacter Sp. Confers Cold Tolerance to Rice. Genes (Basel) 12

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Hou N, Fang N, He J, Ma Z, Ma F, Guan Q, Li X (2021) Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response. Plant Physiol Biochem 168:83–92

Article  CAS  PubMed  Google Scholar 

Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM (2009) Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J 59:150–162

Article  CAS  PubMed  Google Scholar 

Nakaminami K, Sasaki K, Kajita S, Takeda H, Karlson D, Ohgi K, Imai R (2005) Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein. FEBS Lett 579:4887–4891

Article  CAS  PubMed  Google Scholar 

Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci U S A 103:10122–10127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otasek D, Morris JH, Bouças J, Pico AR, Demchak B (2019) Cytoscape automation: empowering workflow-based network analysis. Genome Biol 20:185

Article  PubMed  PubMed Central  Google Scholar 

Park SJ, Kwak KJ, Oh TR, Kim YO, Kang H (2009) Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 50:869–878

Article  CAS  PubMed  Google Scholar 

Peterson GI, Masel J (2009) Quantitative prediction of molecular clock and ka/ks at short timescales. Mol Biol Evol 26:2595–2603

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radkova M, Vítámvás P, Sasaki K, Imai R (2014) Development- and cold-regulated accumulation of cold shock domain proteins in wheat. Plant Physiol Biochem 77:44–48

Article  CAS  PubMed  Google Scholar 

Sasaki K, Imai R (2011) Pleiotropic roles of cold shock domain proteins in plants. Front Plant Sci 2:116

CAS  PubMed  Google Scholar 

Sasaki K, Kim MH, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364:633–638

Article  CAS  PubMed  Google Scholar 

Sasaki K, Kim MH, Imai R (2013) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. New Phytol 198:95–102

Article  CAS  PubMed  Google Scholar 

Sasaki K, Kim M-H, Kanno Y, Seo M, Kamiya Y, Imai R (2015a) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 influences ABA accumulation in seed and negatively regulates germination. Biochem Biophys Res Commun 456:380–384

Article  CAS  PubMed  Google Scholar 

Sasaki K, Liu Y, Kim MH, Imai R (2015b) An RNA chaperone, AtCSP2, negatively regulates salt stress tolerance. Plant Signal Behav 10:e1042637

Comments (0)

No login
gif