Aerts R, Gisi D, Carolis E, Luca V, Baumann T (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643. https://doi.org/10.1111/j.1365-313X.1994.00635.x
Baillo EH, Kimotho RN, Zhang Z, Xu P (2019) Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel) 10:771. https://doi.org/10.3390/genes10100771
Article CAS PubMed Google Scholar
Cao L, Wu H, Zhang H, Zhao Q, Yin X, Zheng D, Li C, Kim MJ, Kim P, Xue Z, Wang Y, Li Y (2020) Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology. Biotechnol Bioeng 117:1615–1627. https://doi.org/10.1002/bit.27325
Article CAS PubMed Google Scholar
Chen J, Zhou Y, Zhang Q, Liu Q, Li L, Sun C, Wang K, Wang Y, Zhao M, Li H et al (2020) Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate in Panax ginseng C.A. Meyer. PLoS ONE 15:e0226055. https://doi.org/10.1371/journal.pone.0226055
Article CAS PubMed PubMed Central Google Scholar
Chen H, Li XZ, Zheng YJ, Liu MM, Wang K (2023) Effects of different culture times genes expression on ginsenoside biosynthesis of the ginseng adventitious roots in Panax ginseng. Horticulturae 9:762. https://doi.org/10.3390/horticulturae9070762
Chu Y, Xiao S, Su H, Liao B, Zhang J, Xu J, Chen S (2018) Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng. Acta Pharm Sin B 8:666–677. https://doi.org/10.1016/j.apsb.2018.04.004
Article PubMed PubMed Central Google Scholar
Coon JT, Ernst E (2002) Panax ginseng: a systematic review of adverse effects and drug interactions. Drug Saf 25:323–344. https://doi.org/10.2165/00002018-200225050-00003
Article CAS PubMed Google Scholar
De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359. https://doi.org/10.1016/j.tplants.2012.03.001
Article CAS PubMed Google Scholar
Gillis CN (1997) Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 54:1–8. https://doi.org/10.1016/s0006-2952(97)00193-7
Article CAS PubMed Google Scholar
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435. https://doi.org/10.1093/nar/gkn176
Article CAS PubMed PubMed Central Google Scholar
Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. PNAS 89:2389–2393. https://doi.org/10.1073/pnas.89.6.2389
Article CAS PubMed PubMed Central Google Scholar
Han JY, Kim HJ, Kwon YS, Choi YE (2011) The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52:2062–2073. https://doi.org/10.1093/pcp/pcr150
Article CAS PubMed Google Scholar
Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53:1535–1545. https://doi.org/10.1093/pcp/pcs106
Article CAS PubMed Google Scholar
Han JY, Kim MJ, Ban YW, Hwang HS, Choi YE (2013) The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 54:2034–2046. https://doi.org/10.1093/pcp/pct141
Article CAS PubMed Google Scholar
Hemmerly TE (1977) A Ginseng farm in Lawrence County, Tennessee. Econ Bot 31:160–162. https://doi.org/10.2307/4253826
Jiang Z, Tu L, Yang W, Zhang Y, Hu T, Ma B, Lu Y, Cui X, Gao J, Wu X et al (2021) The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Commun 2:100113. https://doi.org/10.1016/j.xplc.2020.100113
Article CAS PubMed Google Scholar
Jiao H, Hua Z, Zhou J, Hu J, Zhao Y, Wang Y, Yuan Y, Huang L (2023) Genome-wide analysis of Panax MADS-box genes reveals role of PgMADS41 and PgMADS44 in modulation of root development and ginsenoside synthesis. Int J Biol Macromol 233:123648. https://doi.org/10.1016/j.ijbiomac.2023.123648
Article CAS PubMed Google Scholar
Jung SC, Kim W, Park SC, Jeong J, Park MK, Lim S, Lee Y, Im WT, Lee JH, Choi G, Kim SC (2014) Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol 55:2177–2188. https://doi.org/10.1093/pcp/pcu147
Article CAS PubMed Google Scholar
Khan SA, Li MZ, Wang SM, Yin HJ (2018) Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci 9:1634. https://doi.org/10.3390/ijms19061634
Kim YJ, Zhang D, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 33:717–735. https://doi.org/10.1016/j.biotechadv.2015.03.001
Article CAS PubMed Google Scholar
Krüger T (2018) Editorial change at statistical applications in genetics and molecular biology. Stat Appl Genet Mol Biol 17:20180046. https://doi.org/10.1515/sagmb-2018-0046
Leung KW, Wong AS (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5:20. https://doi.org/10.1186/1749-8546-5-20
Article CAS PubMed PubMed Central Google Scholar
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA (2022) Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 39:875–909. https://doi.org/10.1039/d1np00071c
Article CAS PubMed Google Scholar
Liu T, Luo T, Guo X, Zou X, Zhou D, Afrin S, Li G, Zhang Y, Zhang R, Luo Z (2019) PgMYB2, a MeJA-responsive transcription factor, positively regulates the dammarenediol synthase gene expression in Panax Ginseng. Int J Mol Sci 20:2219. https://doi.org/10.3390/ijms20092219
Article CAS PubMed PubMed Central Google Scholar
Liu Q, Sun C, Han J, Li L, Wang K, Wang Y, Chen J, Zhao M, Wang Y, Zhang M (2020) Identification, characterization and functional differentiation of the NAC gene family and its roles in response to cold stress in ginseng Panax ginseng C.A. Meyer. PLoS ONE 15:e0234423. https://doi.org/10.1371/journal.pone.0234423
Article CAS PubMed PubMed Central Google Scholar
Liu M, Li K, Sheng S, Wang M, Hua P, Wang Y, Chen P, Wang K, Zhao M, Wang Y, Zhang M (2022a) Transcriptome analysis of MYB transcription factors family and PgMYB genes involved in salt stress resistance in Panax ginseng. BMC Plant Biol 22:479. https://doi.org/10.1186/s12870-022-03871-8
Article CAS PubMed PubMed Central Google Scholar
Liu M, Pan Z, Yu J, Zhu L, Zhao M, Wang Y, Chen P, Liu C, Hu J, Liu T, Wang K, Wang Y, Zhang M (2022b) Transcriptome-wide characterization, evolutionary analysis, and expression pattern analysis of the NF-Y transcription factor gene family and salt stress response in Panax ginseng. BMC Plant Biol 22:320. https://doi.org/10.1186/s12870-022-03687-6
Article CAS PubMed PubMed Central Google Scholar
Liu T, Yu E, Hou L, Hua P, Zhao M, Wang Y, Hu J, Zhang M, Wang K, Wang Y (2022c) Transcriptome-based identification, characterization, evolutionary analysis, and expression pattern analysis of the WRKY gene family and salt stress response in Panax ginseng. Horticulturae 8:756.
Comments (0)