Weighted gene co-expression network analysis and identification of ginsenoside biosynthesis candidate genes for ginseng adventitious roots under MeJA treatment

Aerts R, Gisi D, Carolis E, Luca V, Baumann T (1994) Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5:635–643. https://doi.org/10.1111/j.1365-313X.1994.00635.x

Article  CAS  Google Scholar 

Baillo EH, Kimotho RN, Zhang Z, Xu P (2019) Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes (Basel) 10:771. https://doi.org/10.3390/genes10100771

Article  CAS  PubMed  Google Scholar 

Cao L, Wu H, Zhang H, Zhao Q, Yin X, Zheng D, Li C, Kim MJ, Kim P, Xue Z, Wang Y, Li Y (2020) Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology. Biotechnol Bioeng 117:1615–1627. https://doi.org/10.1002/bit.27325

Article  CAS  PubMed  Google Scholar 

Chen J, Zhou Y, Zhang Q, Liu Q, Li L, Sun C, Wang K, Wang Y, Zhao M, Li H et al (2020) Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate in Panax ginseng C.A. Meyer. PLoS ONE 15:e0226055. https://doi.org/10.1371/journal.pone.0226055

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Li XZ, Zheng YJ, Liu MM, Wang K (2023) Effects of different culture times genes expression on ginsenoside biosynthesis of the ginseng adventitious roots in Panax ginseng. Horticulturae 9:762. https://doi.org/10.3390/horticulturae9070762

Article  Google Scholar 

Chu Y, Xiao S, Su H, Liao B, Zhang J, Xu J, Chen S (2018) Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng. Acta Pharm Sin B 8:666–677. https://doi.org/10.1016/j.apsb.2018.04.004

Article  PubMed  PubMed Central  Google Scholar 

Coon JT, Ernst E (2002) Panax ginseng: a systematic review of adverse effects and drug interactions. Drug Saf 25:323–344. https://doi.org/10.2165/00002018-200225050-00003

Article  CAS  PubMed  Google Scholar 

De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359. https://doi.org/10.1016/j.tplants.2012.03.001

Article  CAS  PubMed  Google Scholar 

Gillis CN (1997) Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 54:1–8. https://doi.org/10.1016/s0006-2952(97)00193-7

Article  CAS  PubMed  Google Scholar 

Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435. https://doi.org/10.1093/nar/gkn176

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. PNAS 89:2389–2393. https://doi.org/10.1073/pnas.89.6.2389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han JY, Kim HJ, Kwon YS, Choi YE (2011) The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52:2062–2073. https://doi.org/10.1093/pcp/pcr150

Article  CAS  PubMed  Google Scholar 

Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53:1535–1545. https://doi.org/10.1093/pcp/pcs106

Article  CAS  PubMed  Google Scholar 

Han JY, Kim MJ, Ban YW, Hwang HS, Choi YE (2013) The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 54:2034–2046. https://doi.org/10.1093/pcp/pct141

Article  CAS  PubMed  Google Scholar 

Hemmerly TE (1977) A Ginseng farm in Lawrence County, Tennessee. Econ Bot 31:160–162. https://doi.org/10.2307/4253826

Article  Google Scholar 

Jiang Z, Tu L, Yang W, Zhang Y, Hu T, Ma B, Lu Y, Cui X, Gao J, Wu X et al (2021) The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Commun 2:100113. https://doi.org/10.1016/j.xplc.2020.100113

Article  CAS  PubMed  Google Scholar 

Jiao H, Hua Z, Zhou J, Hu J, Zhao Y, Wang Y, Yuan Y, Huang L (2023) Genome-wide analysis of Panax MADS-box genes reveals role of PgMADS41 and PgMADS44 in modulation of root development and ginsenoside synthesis. Int J Biol Macromol 233:123648. https://doi.org/10.1016/j.ijbiomac.2023.123648

Article  CAS  PubMed  Google Scholar 

Jung SC, Kim W, Park SC, Jeong J, Park MK, Lim S, Lee Y, Im WT, Lee JH, Choi G, Kim SC (2014) Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol 55:2177–2188. https://doi.org/10.1093/pcp/pcu147

Article  CAS  PubMed  Google Scholar 

Khan SA, Li MZ, Wang SM, Yin HJ (2018) Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci 9:1634. https://doi.org/10.3390/ijms19061634

Article  CAS  Google Scholar 

Kim YJ, Zhang D, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 33:717–735. https://doi.org/10.1016/j.biotechadv.2015.03.001

Article  CAS  PubMed  Google Scholar 

Krüger T (2018) Editorial change at statistical applications in genetics and molecular biology. Stat Appl Genet Mol Biol 17:20180046. https://doi.org/10.1515/sagmb-2018-0046

Article  Google Scholar 

Leung KW, Wong AS (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5:20. https://doi.org/10.1186/1749-8546-5-20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA (2022) Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 39:875–909. https://doi.org/10.1039/d1np00071c

Article  CAS  PubMed  Google Scholar 

Liu T, Luo T, Guo X, Zou X, Zhou D, Afrin S, Li G, Zhang Y, Zhang R, Luo Z (2019) PgMYB2, a MeJA-responsive transcription factor, positively regulates the dammarenediol synthase gene expression in Panax Ginseng. Int J Mol Sci 20:2219. https://doi.org/10.3390/ijms20092219

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Q, Sun C, Han J, Li L, Wang K, Wang Y, Chen J, Zhao M, Wang Y, Zhang M (2020) Identification, characterization and functional differentiation of the NAC gene family and its roles in response to cold stress in ginseng Panax ginseng C.A. Meyer. PLoS ONE 15:e0234423. https://doi.org/10.1371/journal.pone.0234423

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Li K, Sheng S, Wang M, Hua P, Wang Y, Chen P, Wang K, Zhao M, Wang Y, Zhang M (2022a) Transcriptome analysis of MYB transcription factors family and PgMYB genes involved in salt stress resistance in Panax ginseng. BMC Plant Biol 22:479. https://doi.org/10.1186/s12870-022-03871-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Pan Z, Yu J, Zhu L, Zhao M, Wang Y, Chen P, Liu C, Hu J, Liu T, Wang K, Wang Y, Zhang M (2022b) Transcriptome-wide characterization, evolutionary analysis, and expression pattern analysis of the NF-Y transcription factor gene family and salt stress response in Panax ginseng. BMC Plant Biol 22:320. https://doi.org/10.1186/s12870-022-03687-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu T, Yu E, Hou L, Hua P, Zhao M, Wang Y, Hu J, Zhang M, Wang K, Wang Y (2022c) Transcriptome-based identification, characterization, evolutionary analysis, and expression pattern analysis of the WRKY gene family and salt stress response in Panax ginseng. Horticulturae 8:756.

Comments (0)

No login
gif
Back To Top