Smith, T. J. & Hegedus, L. Graves’ disease. N. Engl. J. Med. 375, 1552–1565 (2016).
Adams, D. D. Pathogenesis of the hyperthyroidism of Graves’s disease. Br. Med. J. 1, 1015–1019 (1965).
Article CAS PubMed PubMed Central Google Scholar
Lee, H. J., Li, C. W., Hammerstad, S. S., Stefan, M. & Tomer, Y. Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J. Autoimmun. 64, 82–90 (2015).
Article CAS PubMed PubMed Central Google Scholar
Brix, T. H., Kyvik, K. O., Christensen, K. & Hegedus, L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J. Clin. Endocrinol. Metab. 86, 930–934 (2001).
Simmonds, M. J. et al. Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of Graves’ disease. J. Clin. Endocrinol. Metab. 91, 1056–1061 (2006).
Article CAS PubMed Google Scholar
Inoue, N. et al. Associations between autoimmune thyroid disease prognosis and functional polymorphisms of susceptibility genes, CTLA4, PTPN22, CD40, FCRL3, and ZFAT, previously revealed in genome-wide association studies. J. Clin. Immunol. 32, 1243–1252 (2012).
Article CAS PubMed Google Scholar
Khong, J. J. et al. Pooled genome wide association detects association upstream of FCRL3 with Graves’ disease. BMC Genomics 17, 939 (2016).
Article PubMed PubMed Central Google Scholar
Zhao, S. X. et al. A refined study of FCRL genes from a genome-wide association study for Graves’ disease. PLoS One 8, e57758 (2013).
Article CAS PubMed PubMed Central Google Scholar
Hasham, A. & Tomer, Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol. Res. 54, 204–213 (2012).
Article CAS PubMed PubMed Central Google Scholar
Faustino, L. C. et al. Precision medicine in Graves’ disease: CD40 gene variants predict clinical response to an anti-CD40 monoclonal antibody. Front. Endocrinol. 12, 691781 (2021).
Kahaly, G. J. et al. A novel anti-CD40 monoclonal antibody, iscalimab, for control of Graves hyperthyroidism-a proof-of-concept trial. J. Clin. Endocrinol. Metab. 105, dgz013 (2020).
Bufalo, N. E. et al. Polymorphisms of the genes CTLA4, PTPN22, CD40, and PPARG and their roles in Graves’ disease: susceptibility and clinical features. Endocrine 71, 104–112 (2021).
Article CAS PubMed Google Scholar
Shi, T. T. et al. Alterations in the intestinal microbiota of patients with severe and active Graves’ orbitopathy: a cross-sectional study. J. Endocrinol. Invest. 42, 967–978 (2019).
Article CAS PubMed Google Scholar
Biscarini, F. et al. Gut microbiome associated with graves disease and graves orbitopathy: the INDIGO multicenter European study. J. Clin. Endocrinol. Metab. 108, 2065–2077 (2023).
Article PubMed PubMed Central Google Scholar
Pearce, S. H. S. et al. Antigen-specific immunotherapy with thyrotropin receptor peptides in Graves’ hyperthyroidism: a phase I study. Thyroid 29, 1003–1011 (2019).
Article CAS PubMed PubMed Central Google Scholar
Chin, Y. H. et al. Prevalence of thyroid eye disease in Graves’ disease: a meta-analysis and systematic review. Clin. Endocrinol. 93, 363–374 (2020).
Fatourechi, V. Thyroid dermopathy and acropachy. Best Pract. Res. Clin. Endocrinol. Metab. 26, 553–565 (2012).
Article CAS PubMed Google Scholar
Bahn, R. S. Current insights into the pathogenesis of Graves’ ophthalmopathy. Horm. Metab. Res. 47, 773–778 (2015).
Article CAS PubMed Google Scholar
Davies, T. F. et al. Graves’ disease. Nat. Rev. Dis. Prim. 6, 52 (2020).
Kriss, J. P. Pathogenesis and treatment of pretibial myxedema. Endocrinol. Metab. Clin. North Am. 16, 409–415 (1987).
Article CAS PubMed Google Scholar
Fatourechi, V., Pajouhi, M. & Fransway, A. F. Dermopathy of Graves disease (pretibial myxedema). Review of 150 cases. Medicine 73, 1–7 (1994).
Article CAS PubMed Google Scholar
Bartley, G. B. Rundle and his curve. Arch. Ophthalmol. 129, 356–358 (2011).
Bartalena, L. & Fatourechi, V. Extrathyroidal manifestations of Graves’ disease: a 2014 update. J. Endocrinol. Invest. 37, 691–700 (2014).
Article CAS PubMed Google Scholar
Bartalena, L. & Tanda, M. L. Current concepts regarding Graves’ orbitopathy. J. Intern. Med. 292, 692–716 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mourits, M. P., Prummel, M. F., Wiersinga, W. M. & Koornneef, L. Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin. Endocrinol. 47, 9–14 (1997).
Bartalena, L. et al. The 2021 European Group on Graves’ Orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 185, G43–G67 (2021).
Article CAS PubMed Google Scholar
Perros, P., Crombie, A. L. & Kendall-Taylor, P. Natural history of thyroid associated ophthalmopathy. Clin. Endocrinol. 42, 45–50 (1995).
McLeod, D. S. & Cooper, D. S. The incidence and prevalence of thyroid autoimmunity. Endocrine 42, 252–265 (2012).
Article CAS PubMed Google Scholar
Taylor, P. N. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 14, 301–316 (2018).
Schuh, A. et al. Presentation of Graves’ orbitopathy within European Group On Graves’ Orbitopathy (EUGOGO) centres from 2012 to 2019 (PREGO III). Br. J. Ophthalmol. 108, 294–300 (2023).
Tanda, M. L. et al. Prevalence and natural history of Graves’ orbitopathy in a large series of patients with newly diagnosed graves’ hyperthyroidism seen at a single center. J. Clin. Endocrinol. Metab. 98, 1443–1449 (2013).
Article CAS PubMed Google Scholar
Tomer, Y. Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. Annu. Rev. Pathol. 9, 147–156 (2014).
Article CAS PubMed PubMed Central Google Scholar
Limbach, M. et al. Epigenetic profiling in CD4+ and CD8+ T cells from Graves’ disease patients reveals changes in genes associated with T cell receptor signaling. J. Autoimmun. 67, 46–56 (2016).
Comments (0)