Endocrine effects of heat exposure and relevance to climate change

Intergovernmental Panel on Climate Change. Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (IPCC, 2023).

Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398, 698–708 (2021).

Article  PubMed  Google Scholar 

Valli, F. E., Simoncini, M. S., Gonzalez, M. A. & Pina, C. I. How do maternal androgens and estrogens affect sex determination in reptiles with temperature-dependent sex? Dev. Growth Differ. 65, 565–576 (2023).

Article  PubMed  Google Scholar 

Carpentier, A. C., Blondin, D. P., Haman, F. & Richard, D. Brown adipose tissue – a translational perspective. Endocr. Rev. 44, 143–192 (2023).

Article  PubMed  Google Scholar 

Ratter-Rieck, J. M., Roden, M. & Herder, C. Diabetes and climate change: current evidence and implications for people with diabetes, clinicians and policy stakeholders. Diabetologia 66, 1003–1015 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Kingma, B. R., Frijns, A. J., Schellen, L. & van Marken Lichtenbelt, W. D. Beyond the classic thermoneutral zone: including thermal comfort. Temperature 1, 142–149 (2014).

Article  Google Scholar 

Rothhaas, R. & Chung, S. Role of the preoptic area in sleep and thermoregulation. Front. Neurosci. 15, 664781 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wee, J. et al. Effects of medications on heat loss capacity in chronic disease patients: health implications amidst global warming. Pharmacol. Rev. 75, 1140–1166 (2023).

Article  CAS  PubMed  Google Scholar 

Farrell, M. J., Trevaks, D. & McAllen, R. M. Preoptic activation and connectivity during thermal sweating in humans. Temperature 1, 135–141 (2014).

Article  Google Scholar 

Commission for Thermal Physiology of the International Union of Physiological Sciences. Glossary of terms for thermal physiology (third edition). Jpn. J. Physiol. 51, 245–280 (2001).

Google Scholar 

Periard, J. D., Eijsvogels, T. M. H. & Daanen, H. A. M. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol. Rev. 101, 1873–1979 (2021).

Article  CAS  PubMed  Google Scholar 

Follenius, M., Brandenberger, G., Oyono, S. & Candas, V. Cortisol as a sensitive index of heat-intolerance. Physiol. Behav. 29, 509–513 (1982).

Article  CAS  PubMed  Google Scholar 

Powers, S. K., Howley, E. T. & Cox, R. A differential catecholamine response during prolonged exercise and passive heating. Med. Sci. Sports Exerc. 14, 435–439 (1982).

Article  CAS  PubMed  Google Scholar 

Kazakou, P., Nicolaides, N. C. & Chrousos, G. P. Basic concepts and hormonal regulators of the stress system. Horm. Res. Paediatr. 96, 8–16 (2023).

Article  CAS  PubMed  Google Scholar 

Cameron, A. et al. Temperature-responsive release of cortisol from its binding globulin: a protein thermocouple. J. Clin. Endocrinol. Metab. 95, 4689–4695 (2010).

Article  CAS  PubMed  Google Scholar 

Wang, L. I., Liu, F., Luo, Y., Zhu, L. & Li, G. Effect of acute heat stress on adrenocorticotropic hormone, cortisol, interleukin-2, interleukin-12 and apoptosis gene expression in rats. Biomed. Rep. 3, 425–429 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chowers, I., Conforti, N. & Feldman, S. Local effect of cortisol in the preoptic area on temperature regulation. Am. J. Physiol. 214, 538–542 (1968).

Article  CAS  PubMed  Google Scholar 

Zheng, X., Takatsu, S., Ishikawa, R. & Hasegawa, H. Moderate intensity, exercise-induced catecholamine release in the preoptic area and anterior hypothalamus in rats is enhanced in a warm environment. J. Therm. Biol. 71, 123–127 (2018).

Article  CAS  PubMed  Google Scholar 

Dempsey, E. W. & Astwood, E. B. A determination of the rate of thyroid hormone secretion at various environmental temperatures. Endocrinology 32, 509–518 (1943).

Article  CAS  Google Scholar 

Martelli, D. et al. The direct cooling of the preoptic-hypothalamic area elicits the release of thyroid stimulating hormone during wakefulness but not during REM sleep. PLoS One 9, e87793 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Warner, A. et al. Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor α1. Proc. Natl Acad. Sci. USA 110, 16241–16246 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kahl, S., Elsasser, T. H., Rhoads, R. P., Collier, R. J. & Baumgard, L. H. Environmental heat stress modulates thyroid status and its response to repeated endotoxin challenge in steers. Domest. Anim. Endocrinol. 52, 43–50 (2015).

Article  CAS  PubMed  Google Scholar 

Chen, W. L., Huang, W. S., Lin, Y. F. & Shieh, S. D. Changes in thyroid hormone metabolism in exertional heat stroke with or without acute renal failure. J. Clin. Endocrinol. Metab. 81, 625–629 (1996).

CAS  PubMed  Google Scholar 

May, J. D. Effect of dietary thyroid hormone on survival time during heat stress. Poult. Sci. 61, 706–709 (1982).

Article  CAS  PubMed  Google Scholar 

Qi, X., Chan, W. L., Read, R. J., Zhou, A. & Carrell, R. W. Temperature-responsive release of thyroxine and its environmental adaptation in Australians. Proc. Biol. Sci. 281, 20132747 (2014).

PubMed  PubMed Central  Google Scholar 

Périard, J. D., Travers, G. J. S., Racinais, S. & Sawka, M. N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. 196, 52–62 (2016).

Article  PubMed  Google Scholar 

Kosunen, K. J., Pakarinen, A. J., Kuoppasalmi, K. & Adlercreutz, H. Plasma renin activity, angiotensin II, and aldosterone during intense heat stress. J. Appl. Physiol. 41, 323–327 (1976).

Article  CAS  PubMed  Google Scholar 

Takamata, A., Mack, G. W., Stachenfeld, N. S. & Nadel, E. R. Body temperature modification of osmotically induced vasopressin secretion and thirst in humans. Am. J. Physiol. 269, R874–R880 (1995).

CAS  PubMed  Google Scholar 

Noakes, T. D. et al. Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2,135 weighed competitive athletic performances. Proc. Natl Acad. Sci. USA 102, 18550–18555 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steiner, A. A., Carnio, E. C., Antunes-Rodrigues, J. & Branco, L. G. Role of nitric oxide in systemic vasopressin-induced hypothermia. Am. J. Physiol. 275, R937–R941 (1998).

CAS  PubMed  Google Scholar 

Tang, Y. et al. Effects of arginine vasopressin on firing activity and thermosensitivity of rat PO/AH area neurons. Neuroscience 219, 10–22 (2012).

Article  CAS  PubMed  Google Scholar 

Soares, M. J. The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod. Biol. Endocrinol. 2, 51 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Chesnokova, V. & Melmed, S. GH and senescence: a new understanding of adult GH action. J. Endocr. Soc. 6, bvab177 (2022).

Article  PubMed  Google Scholar 

Hannan, F. M., Elajnaf, T., Vandenberg, L. N., Kennedy, S. H. & Thakker, R. V. Hormonal regulation of mammary gland development and lactation. Nat. Rev. Endocrinol. 19, 46–61 (2023).

Article  PubMed 

Comments (0)

No login
gif