Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S. & Pardesi, K. R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol. 10, 539 (2019).
Article PubMed PubMed Central Google Scholar
Talbot, G. H. et al. The infectious diseases society of America’s 10 × ′20 Initiative (10 new systemic antibacterial agents US food and drug administration approved by 2020): is 20 × ′20 a possibility? Clin. Infect. Dis. 69, 1–11 (2019).
De Oliveira, D. M. P. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, e00181–19 (2020).
Article PubMed PubMed Central Google Scholar
Testero, S. A., Llarrull, L. I., Fisher, J. F. & Mobashery, S. in Burger’s Medicinal Chemistry, Drug Discovery and Development 8th edn (ed. Abraham, D. J.) 1–188 (Wiley, 2021).
Jevons, M. P., Rolinson, G. N. & Knox, R. ‘Celbenin’-resistant staphylococci. Br. Med. J. 1, 124–125 (1961).
Turner, N. A. et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17, 203–218 (2019).
Article CAS PubMed PubMed Central Google Scholar
Palavecino, E. L. Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections. Methods Mol. Biol. 2069, 1–28 (2020).
Article CAS PubMed Google Scholar
Jarvis, W. R. Prevention and control of methicillin-resistant Staphylococcus aureus: dealing with reality, resistance, and resistance to reality. Clin. Infect. Dis. 50, 218–220 (2010).
Chastre, J. Evolving problems with resistant pathogens. Clin. Microb. Infect. 14, 3–14 (2008).
Andersen, E. When staff meet Staph-MRSA in the hospital setting. AAOHN J. 51, 499–500 (2003).
Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. A proteolytic transmembrane signaling pathway and resistance to β-lactams in Staphylococci. Science 291, 1962–1965 (2001).
Article CAS PubMed Google Scholar
Llarrull, L. I., Toth, M., Champion, M. M. & Mobashery, S. Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J. Biol. Chem. 286, 38148–38158 (2011).
Article CAS PubMed PubMed Central Google Scholar
Llarrull, L. I., Fisher, J. F. & Mobashery, S. Molecular basis and phenotype of methicillin-resistance in Staphylococcus aureus and insights into new β-lactams that meet the challenge. Antimicrob. Agents Chemother. 53, 4051–4063 (2009).
Article CAS PubMed PubMed Central Google Scholar
Alexander, J. A. N. et al. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 613, 375–382 (2023).
Article CAS PubMed PubMed Central Google Scholar
Fisher, J. F. & Mobashery, S. β-Lactams against the fortress of the gram-positive Staphylococcus aureus bacterium. Chem. Rev. 121, 3412–3463 (2021).
Fuda, C. C., Fisher, J. F. & Mobashery, S. β-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell. Mol. Life Sci. 62, 2617–2633 (2005).
Article CAS PubMed PubMed Central Google Scholar
Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).
Article CAS PubMed PubMed Central Google Scholar
Fuda, C., Suvorov, M., Vakulenko, S. & Mobashery, S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a (PBP2a) of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 279, 40802–40806 (2004).
Article CAS PubMed Google Scholar
Safo, M. K. et al. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec. Acta Crystallogr. Sect. F 62, 320–324 (2006).
Safo, M. K. et al. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons. J. Bacteriol. 187, 1833–1844 (2005).
Article CAS PubMed PubMed Central Google Scholar
Llarrull, L. I., Prorok, M. & Mobashery, S. Binding of the gene repressor BlaI to the bla operon in methicillin-resistant Staphylococcus aureus. Biochemistry 49, 7975–7977 (2010).
Article CAS PubMed Google Scholar
Blazquez, B. et al. Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 53, 1548–1550 (2014).
Article CAS PubMed Google Scholar
Bouley, R. et al. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. J. Am. Chem. Soc. 137, 1738–1741 (2015).
Article CAS PubMed PubMed Central Google Scholar
Irwin, J. J. & Shoichet, B. K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).
Article CAS PubMed PubMed Central Google Scholar
Kawatkar, S., Wang, H., Czerminski, R. & Joseph-McCarthy, D. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using GLIDE. J. Comput. Aided Mol. Des. 23, 527–539 (2009).
Article CAS PubMed Google Scholar
Friesner, R. A. et al. GLIDE: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).
Article CAS PubMed Google Scholar
Halgren, T. A. et al. GLIDE: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).
Article CAS PubMed Google Scholar
Friesner, R. A. et al. Extra precision GLIDE: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).
Article CAS PubMed Google Scholar
Charpentier, E. et al. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).
Tsivkovski, R. & Lomovskaya, O. Biochemical activity of vaborbactam. Antimicrob. Agents Chemother. 64, e01935–19 (2020).
Article CAS PubMed PubMed Central Google Scholar
Tsivkovski, R. & Lomovskaya, O. Potency of vaborbactam is less affected than that of avibactam in strains producing KPC-2 mutations that confer resistance to ceftazidime–avibactam. Antimicrob. Agents Chemother. 64, e01936–19 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hecker, S. J. et al. Discovery of cyclic boronic acid QPX7728, an ultrabroad-spectrum inhibitor of serine and metallo-β-lactamases. J. Med. Chem. 63, 7491–7507 (2020).
Article CAS PubMed Google Scholar
Werner, J. P., Mitchell, J. M., Taracila, M. A., Bonomo, R. A. & Powers, R. A. Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase. Protein Sci. 26, 515–526 (2017).
Article CAS PubMed PubMed Central Google Scholar
Mons, E., Roet, S., Kim, R. Q. & Mulder, M. P. C. A comprehensive guide for assessing covalent inhibition in enzymatic assays illustrated with kinetic simulations. Curr. Protoc. 2, 419 (2022).
Comments (0)