Restoring susceptibility to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus

Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S. & Pardesi, K. R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol. 10, 539 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Talbot, G. H. et al. The infectious diseases society of America’s 10 × ′20 Initiative (10 new systemic antibacterial agents US food and drug administration approved by 2020): is 20 × ′20 a possibility? Clin. Infect. Dis. 69, 1–11 (2019).

De Oliveira, D. M. P. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, e00181–19 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Testero, S. A., Llarrull, L. I., Fisher, J. F. & Mobashery, S. in Burger’s Medicinal Chemistry, Drug Discovery and Development 8th edn (ed. Abraham, D. J.) 1–188 (Wiley, 2021).

Jevons, M. P., Rolinson, G. N. & Knox, R. ‘Celbenin’-resistant staphylococci. Br. Med. J. 1, 124–125 (1961).

Turner, N. A. et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17, 203–218 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palavecino, E. L. Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections. Methods Mol. Biol. 2069, 1–28 (2020).

Article  CAS  PubMed  Google Scholar 

Jarvis, W. R. Prevention and control of methicillin-resistant Staphylococcus aureus: dealing with reality, resistance, and resistance to reality. Clin. Infect. Dis. 50, 218–220 (2010).

Article  PubMed  Google Scholar 

Chastre, J. Evolving problems with resistant pathogens. Clin. Microb. Infect. 14, 3–14 (2008).

Article  CAS  Google Scholar 

Andersen, E. When staff meet Staph-MRSA in the hospital setting. AAOHN J. 51, 499–500 (2003).

Article  PubMed  Google Scholar 

Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. A proteolytic transmembrane signaling pathway and resistance to β-lactams in Staphylococci. Science 291, 1962–1965 (2001).

Article  CAS  PubMed  Google Scholar 

Llarrull, L. I., Toth, M., Champion, M. M. & Mobashery, S. Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J. Biol. Chem. 286, 38148–38158 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Llarrull, L. I., Fisher, J. F. & Mobashery, S. Molecular basis and phenotype of methicillin-resistance in Staphylococcus aureus and insights into new β-lactams that meet the challenge. Antimicrob. Agents Chemother. 53, 4051–4063 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander, J. A. N. et al. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 613, 375–382 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fisher, J. F. & Mobashery, S. β-Lactams against the fortress of the gram-positive Staphylococcus aureus bacterium. Chem. Rev. 121, 3412–3463 (2021).

Fuda, C. C., Fisher, J. F. & Mobashery, S. β-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell. Mol. Life Sci. 62, 2617–2633 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuda, C., Suvorov, M., Vakulenko, S. & Mobashery, S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a (PBP2a) of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 279, 40802–40806 (2004).

Article  CAS  PubMed  Google Scholar 

Safo, M. K. et al. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec. Acta Crystallogr. Sect. F 62, 320–324 (2006).

Article  CAS  Google Scholar 

Safo, M. K. et al. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons. J. Bacteriol. 187, 1833–1844 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Llarrull, L. I., Prorok, M. & Mobashery, S. Binding of the gene repressor BlaI to the bla operon in methicillin-resistant Staphylococcus aureus. Biochemistry 49, 7975–7977 (2010).

Article  CAS  PubMed  Google Scholar 

Blazquez, B. et al. Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 53, 1548–1550 (2014).

Article  CAS  PubMed  Google Scholar 

Bouley, R. et al. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. J. Am. Chem. Soc. 137, 1738–1741 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Irwin, J. J. & Shoichet, B. K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawatkar, S., Wang, H., Czerminski, R. & Joseph-McCarthy, D. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using GLIDE. J. Comput. Aided Mol. Des. 23, 527–539 (2009).

Article  CAS  PubMed  Google Scholar 

Friesner, R. A. et al. GLIDE: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

Article  CAS  PubMed  Google Scholar 

Halgren, T. A. et al. GLIDE: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).

Article  CAS  PubMed  Google Scholar 

Friesner, R. A. et al. Extra precision GLIDE: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

Article  CAS  PubMed  Google Scholar 

Charpentier, E. et al. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).

Tsivkovski, R. & Lomovskaya, O. Biochemical activity of vaborbactam. Antimicrob. Agents Chemother. 64, e01935–19 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsivkovski, R. & Lomovskaya, O. Potency of vaborbactam is less affected than that of avibactam in strains producing KPC-2 mutations that confer resistance to ceftazidime–avibactam. Antimicrob. Agents Chemother. 64, e01936–19 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hecker, S. J. et al. Discovery of cyclic boronic acid QPX7728, an ultrabroad-spectrum inhibitor of serine and metallo-β-lactamases. J. Med. Chem. 63, 7491–7507 (2020).

Article  CAS  PubMed  Google Scholar 

Werner, J. P., Mitchell, J. M., Taracila, M. A., Bonomo, R. A. & Powers, R. A. Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase. Protein Sci. 26, 515–526 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mons, E., Roet, S., Kim, R. Q. & Mulder, M. P. C. A comprehensive guide for assessing covalent inhibition in enzymatic assays illustrated with kinetic simulations. Curr. Protoc. 2, 419 (2022).

Article  Google Scholar 

Comments (0)

No login
gif