Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients

Alatzoglou KS, Gregory LC, Dattani MT. Development of the Pituitary Gland. Compr Physiol. 2020;10:389–413. https://doi.org/10.1002/cphy.c150043.

Article  PubMed  Google Scholar 

Shields R, Mangla R, Almast J, Meyers S. Magnetic resonance imaging of sellar and juxtasellar abnormalities in the paediatric population: an imaging review. Insights Imaging. 2015. https://doi.org/10.1007/s13244-015-0401-5. 6:241 – 60.

Article  PubMed  PubMed Central  Google Scholar 

Larkin S, Ansorge O et al. Development and microscopic anatomy of the pituitary gland. In: Feingold KR, Anawalt B, Blackman MR, eds. Endotext (Internet). South Dartmouth (MA): MDText.com, Inc. 2017; PMID: 28402619.

Katugampola H, Cerbone M, Dattani M. Normal hypothalamic and Pituitary Development and Physiology in the Fetus and Neonate. In: Kovacs CS, Deal C, editors. Materna-fetal and neonatal endocrinology. London, U.K.: Elsevier; 2020. pp. 527–45.

Chapter  Google Scholar 

Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989;338:161–4. https://doi.org/10.1038/338161a0.

Article  CAS  PubMed  Google Scholar 

Casoni F, Malone SA, Belle M, et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development. 2016;143:3969–81. https://doi.org/10.1242/dev.139444.

Article  CAS  PubMed  Google Scholar 

Alvarez-Bolado G. Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res. 2019;375:23–39. https://doi.org/10.1007/s00441-018-2859-1.

Article  CAS  PubMed  Google Scholar 

Sykiotis GP, Pitteloud N, Seminara SB, Kaiser UB, Crowley WF. Jr. Deciphering genetic Disease in the genomic era: the model of GnRH deficiency. Sci Transl Med. 2010;2:32rv2. https://doi.org/10.1126/scitranslmed.3000288.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al Sayed Y, Howard SR. Panel testing for the molecular genetic diagnosis of congenital hypogonadotropic hypogonadism - a clinical perspective. Eur J Hum Genet. 2023. https://doi.org/10.1038/s41431-022-01261-0. 31:387 – 94.

Article  PubMed  Google Scholar 

Argente J, Perez-Jurado LA. Genetic causes of proportionate short stature. Best Pract Res Clin Endocrinol Metab. 2018;32:499–522. https://doi.org/10.1016/j.beem.2018.05.012.

Article  CAS  PubMed  Google Scholar 

Jee YH, Baron J. The Biology of Stature. J Pediatr. 2016. https://doi.org/10.1016/j.jpeds.2016.02.068. 173:32 – 8.

Polak M, Luton D. Fetal thyroidology. Best Pract Res Clin Endocrinol Metab. 2014;28:161–73. https://doi.org/10.1016/j.beem.2013.04.013.

Article  CAS  PubMed  Google Scholar 

Eng L, Lam L. Thyroid function during the fetal and neonatal periods. Neoreviews. 2020;21:e30–e6. https://doi.org/10.1542/neo.21-1-e30.

Article  PubMed  Google Scholar 

Vulsma T, Gons MH, de Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med. 1989;321:13–6. https://doi.org/10.1056/NEJM198907063210103.

Article  CAS  PubMed  Google Scholar 

Baquedano MS, Belgorosky A. Human adrenal cortex: epigenetics and postnatal functional zonation. Horm Res Paediatr. 2018;89:331–40. https://doi.org/10.1159/000487995.

Article  CAS  PubMed  Google Scholar 

Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and Cortisol Secretion and implications for Disease. Endocr Rev. 2020;41. https://doi.org/10.1210/endrev/bnaa002.

Grinspon RP, Bergadá I, Rey RA. Male Hypogonadism and disorders of Sex Development. Front Endocrinol (Lausanne). 2020;11:211. https://doi.org/10.3389/fendo.2020.00211.

Article  PubMed  Google Scholar 

Kuiri-Hänninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy, minipuberty. Horm Res Paediatr. 2014;82:73–80. https://doi.org/10.1159/000362414.

Article  CAS  PubMed  Google Scholar 

Grinspon RP, Urrutia M, Rey RA. Male Central Hypogonadism in Paediatrics – the relevance of follicle-stimulating hormone and sertoli cell markers. Eur Endocrinol. 2018;14:67–71. https://doi.org/10.17925/EE.2018.14.2.67.

Article  PubMed  PubMed Central  Google Scholar 

Argente J, Dunkel L, Kaiser UB, et al. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol. 2023. https://doi.org/10.1016/S2213-8587(22)00339-4. 11:203 – 16.

Article  PubMed  PubMed Central  Google Scholar 

Kuiri-Hänninen T, Dunkel L, Sankilampi U. Sexual dimorphism in postnatal gonadotrophin levels in infancy reflects diverse maturation of the ovarian and testicular hormone synthesis. Clin Endocrinol (Oxf). 2018;89:85–92. https://doi.org/10.1111/cen.13716.

Article  CAS  PubMed  Google Scholar 

Ljubicic ML, Madsen A, Upners EN, et al. Longitudinal evaluation of breast tissue in healthy infants: prevalence and relation to reproductive hormones and growth factors. Front Endocrinol (Lausanne). 2022;13:1048660. https://doi.org/10.3389/fendo.2022.1048660.

Article  PubMed  Google Scholar 

Gregory LC, Cionna C, Cerbone M, Dattani MT. Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders. Genet Med. 2023;25:100881. https://doi.org/10.1016/j.gim.2023.100881.

Article  CAS  PubMed  Google Scholar 

Jakobsen LK, Jensen RB, Birkebaek NH, et al. Diagnosis and incidence of congenital combined pituitary hormone Deficiency in Denmark-A National Observational Study. J Clin Endocrinol Metab. 2023;108:2475–85. https://doi.org/10.1210/clinem/dgad198.

Article  PubMed  PubMed Central  Google Scholar 

Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev. 2007. https://doi.org/10.1152/physrev.00006.2006. 87:933 – 63.

Article  PubMed  Google Scholar 

Mortensen AH, MacDonald JW, Ghosh D, Camper SA. Candidate genes for panhypopituitarism identified by gene expression profiling. Physiol Genomics. 2011;43:1105–16. https://doi.org/10.1152/physiolgenomics.00080.2011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006. https://doi.org/10.1016/j.cell.2006.10.018. 127:469 – 80.

Youngblood JL, Coleman TF, Davis SW. Regulation of Pituitary Progenitor Differentiation by beta-Catenin. Endocrinology. 2018. https://doi.org/10.1210/en.2018-00563. 159:3287 – 305.

O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med. 1995;333:1386–90. https://doi.org/10.1056/NEJM199511233332104.

Article  PubMed  Google Scholar 

Pépin L, Colin E, Tessarech M, et al. A New Case of PCSK1 pathogenic variant with congenital Proprotein Convertase 1/3 Deficiency and Literature Review. J Clin Endocrinol Metab. 2019;104:985–93. https://doi.org/10.1210/jc.2018-01854.

Article  PubMed  Google Scholar 

Tauber M, Hoybye C. Endocrine Disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 2021. https://doi.org/10.1016/S2213-8587(21)00002-4. 9:235 – 46.

Article  PubMed  Google Scholar 

Patel L, McNally RJ, Harrison E, Lloyd IC, Clayton PE. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J Pediatr. 2006;148:85–8. https://doi.org/10.1016/j.jpeds.2005.07.031.

Article  PubMed  Google Scholar 

Olson LE, Tollkuhn J, Scafoglio C, et al. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell. 2006;125:593–605. https://doi.org/10.1016/j.cell.2006.02.046.

Article  CAS  PubMed  Goog

Comments (0)

No login
gif