Monte carlo simulation study on the dose and dose-averaged linear energy transfer distributions in carbon ion radiotherapy

Tobias CA, et al. Radiological physics characteristics of the extracted heavy ion beams of the bevatron. Science. 1971;174(4014):1131–4. https://doi.org/10.1126/science.174.4014.1131.

Article  CAS  PubMed  Google Scholar 

Hirao Y, et al. Heavy ion synchrotron for medical use—HIMAC project at NIRS-Japan—. Nucl Phys A. 1992;538:541–50. https://doi.org/10.1016/0375-9474(92)90803-R.

Article  Google Scholar 

Kamada T, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 2015;16(2):e93–100. https://doi.org/10.1016/S1470-2045(14)70412-7.

Article  PubMed  Google Scholar 

Yanagi T, et al. Dose–volume histogram and dose–surface histogram analysis for skin reactions to carbon ion radiotherapy for bone and soft tissue sarcoma. Radiother Oncol. 2009;95(1):60–5. https://doi.org/10.1016/j.radonc.2009.08.041.

Article  CAS  PubMed  Google Scholar 

Okonogi N, et al. Dose-averaged linear energy transfer per se does not correlate with late rectal complications in carbon-ion radiotherapy. Radiother Oncol. 2020;153:272–8. https://doi.org/10.1016/j.radonc.2020.08.029.

Article  CAS  PubMed  Google Scholar 

Matsumoto S, et al. Unresectable chondrosarcomas treated with carbon ion radiotherapy: relationship between dose-averaged linear energy transfer and local recurrence. Anticancer Res. 2020;40(11):6429–35. https://doi.org/10.21873/anticanres.14664.

Article  CAS  PubMed  Google Scholar 

Mohamad O, et al. Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: a propensity score-weighted, retrospective, cohort study. Lancet Oncol. 2019;20(5):674–85. https://doi.org/10.1016/S1470-2045(18)30931-8.

Article  PubMed  Google Scholar 

Hagiwara Y, et al. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer. Clin Translational Radiat Oncol. 2020;21:19–24. https://doi.org/10.1016/j.ctro.2019.11.002.

Article  Google Scholar 

Kanematsu N, et al. Estimation of linear energy transfer distribution for broad-beam carbon-ion radiotherapy at the national institute of radiological sciences, Japan. Radiol Phys Technol. 2018;11:242–7. https://doi.org/10.1007/s12194-018-0444-7.

Article  PubMed  Google Scholar 

Anakura M, et al. Improved algorithm for estimation of linear energy transfer in carbon ion radiotherapy plans. Anticancer Res. 2023;43(7):2975–84. https://doi.org/10.21873/anticanres.16468.

Article  CAS  PubMed  Google Scholar 

Kanai T, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phy. 1999;44(1):201–10. https://doi.org/10.1016/S0360-3016(98)00544-6.

Article  CAS  Google Scholar 

Sato T, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 2018;55(6):684–90. https://doi.org/10.1080/00223131.2017.1419890.

Article  CAS  Google Scholar 

Furuta T, et al. Development of the DICOM-based monte carlo dose reconstruction system for a retrospective study on the secondary cancer risk in carbon ion radiotherapy. Phys Med Biol. 2022;67: 145002. https://doi.org/10.1088/1361-6560/ac7998.

Article  CAS  Google Scholar 

ATIMA. https://web-docs.gsi.de/~weick/atima/ Accessed 16 May 2023.

Iida K, et al. Formula for proton-nucleus reaction cross section at intermediate energies and its application. J Phys Soc Jpn. 2007;76(4): 044201. https://doi.org/10.1143/JPSJ.76.044201.

Article  CAS  Google Scholar 

Chang W, et al. Technical note: validation of a material assignment method for a retrospective study of carbon-ion radiotherapy using monte carlo simulation. J Radiat Res. 2021;62(5):1–10. https://doi.org/10.1093/jrr/rrab028.

Article  CAS  Google Scholar 

ICRP, Adult Reference Computational Phantoms, ICRP Publication 110, Ann. ICRP, Vol. 39, No. 2 (2009)

Schneider W, et al. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol. 2000;45:459. https://doi.org/10.1088/0031-9155/45/2/314.

Article  CAS  PubMed  Google Scholar 

Parodi K, et al. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. Radiat Oncol Biol Phys. 2007;68(3):920–34. https://doi.org/10.1016/j.ijrobp.2007.01.063.

Article  Google Scholar 

Paganetti H, et al. Clinical implementation of full monte carlo dose calculation in proton beam therapy. Phys Med Biol. 2008;53:4825. https://doi.org/10.1088/0031-9155/53/17/023.

Article  PubMed  Google Scholar 

Kry SF, et al. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys. 2017;44(10):e391–429. https://doi.org/10.1002/mp.12462.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif