Wu J, Su R, Qiu D, et al. Analysis of DWI in the classification of glioma pathology and its therapeutic application in clinical surgery: a case-control study. Transl Cancer Res. 2022;11(4):805–12. https://doi.org/10.21037/tcr-22-114.
Article PubMed PubMed Central Google Scholar
Matsuda K, Kokubo Y, Kanemura Y, et al. Preoperative apparent diffusion coefficient of peritumoral lesion associate with recurrence in patients with glioblastoma. Neurol Medico-chirurgica. 2022;62(1):28–34. https://doi.org/10.2176/nmc.oa.2021-0182.
Han J, Zhang X, Zhang AD, et al. Impact of primary tumor site on the prognosis in different stage colorectal cancer patients after radical resection. Chin J Surg. 2018;56(1):68–73. https://doi.org/10.3760/cma.j.issn.0529-5815.2018.01.015.
Article CAS PubMed Google Scholar
Fourcade A, Khonsari RH. Deep learning in medical image analysis: a third eye for doctors. J Stomatol Oral Maxillofacial Surg. 2019;120(4):279–88.
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Medical image computing and computer assisted intervention (MICCAI), ser. LNCS, vol. 9351. Springer, pp. 234–241. 2015. https://doi.org/10.48550/arXiv.1505.04597
Gutta S, Acharya J, Shiroishi MS, et al. Improved glioma grading using deep convolutional neural networks. Am J Neuroradiol. 2021;42(2):233–9. https://doi.org/10.3174/ajnr.A6882.
Article CAS PubMed PubMed Central Google Scholar
Zhu J, Zhang J, Qiu B, et al. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Acta Oncol. 2019;58(2):257–64. https://doi.org/10.1080/0284186X.2018.1529421.
Sakashita N, Shirai K, Ueda Y, et al. Convolutional neural network-based automatic liver delineation on contrast-enhanced and non-contrast-enhanced CT images for radiotherapy planning. Rep Pract Oncol Radiother. 2020;25(6):981–6. https://doi.org/10.1016/j.rpor.2020.09.005.
Article PubMed PubMed Central Google Scholar
Xu JH, Zhou XM, Ma JL, et al. Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging. Chin J Gastrointest Surg. 2020;23(6):572–7. https://doi.org/10.3760/cma.j.cn.441530-20191023-00460.
Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. In: Computer vision and pattern recognition (CVPR). 2005. https://doi.org/10.1109/CVPR.2005.38
Wang X, Girshick R, Gupta A, He K. Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7794–7803). 2018. https://doi.org/10.48550/arXiv.1711.07971
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. International conference on learning representations. 2021. https://doi.org/10.48550/arXiv.2010.11929
Park N, Kim S. How do vision transformers work?. In: ICLR. 2022. https://doi.org/10.48550/arXiv06709
Pan Z, Cai J, Zhuang B Fast vision transformers with hilo attention. Advances in neural information processing systems, 35: 14541–14554. 2022. https://doi.org/10.48550/arXiv.2205.13213
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. MobileNets: Efficient convolutional neural networks for mobile vision applications. 2017. https://doi.org/10.48550/arXiv.1704.04861
Ghiasi A, Kazemi H, Borgnia E, Reich S, Shu M, Goldblum M, Wilson AG, Goldstein T. What do vision transformers learn? a visual exploration. 2022. https://doi.org/10.48550/arXiv.2212.06727
Ba J, Kiros J, Hinton GE. Layer normalization. 2016. https://doi.org/10.48550/arXiv.1607.06450
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin transformer: Hierarchical vision transformer using shifted windows. 2021 IEEE/CVF international conference on computer vision(ICCV): 9992–10002. 2021. https://doi.org/10.48550/arXiv.2103.14030
Pan Z, Zhuang B, He H, Liu J, Cai J. Less is more: Pay less attention in vision transformers. In: AAAI. 2022.https://doi.org/10.48550/arXiv.2105.14217
Ioffe S, Szegedy C Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML, pages 448–456. 2015. https://doi.org/10.48550/arXiv.1502.03167
Fan CM, Liu TJ, Liu KH SUNet: Swin transformer UNet for image denoising. 2022 IEEE international symposium on circuits and systems (ISCAS), pp. 2333–2337. 2022. https://doi.org/10.48550/arXiv.2202.14009
Milletari F, Navab N, Ahmadi SA. V-net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 fourth international conference on 3D vision (3DV), pp. 565–571. 2016. https://doi.org/10.1109/3DV.2016.79
Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y. Transunet: Transformers make strong encoders for medical image segmentation. CoRR. 2021. https://doi.org/10.48550/arXiv.2102.04306
Bernard O, Lalande A, Zotti C, Cervenansky F, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging. 2018;37(11):2514–25. https://doi.org/10.1109/TMI.2018.2837502.
Schlemper Jo, Oktay O, Schaap M, Heinrich MP, Kainz B, Glocker B, Rueckert D. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53:197–207. https://doi.org/10.1016/j.media.2019.01.012.
Article PubMed PubMed Central Google Scholar
Wang H, Xie S, Lin L, Iwamoto Y, Han XH, Chen YW, Tong R. Mixed transformer U-Net for medical image segmentation. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), Singapore, pp. 2390–2394. 2022. https://doi.org/10.1109/ICASSP43922.2022.9746172
.Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M. Swin-Unet: Unet-like pure transformer for medical image segmentation. ECCV workshops. 2021. https://doi.org/10.48550/arXiv.2105.05537
Ruan J, Xie M, Xiang S, Liu T, Fu Y. MEW-UNet: Multi-axis representation learning in frequency domain for medical image segmentation. 2022. https://doi.org/10.48550/arXiv.2210.14007
Zhong X, Xu L, Li C, An L, Wang L. RFE-UNet: remote feature exploration with local learning for medical image segmentation. Sensors. 2023;23(13):6228. https://doi.org/10.3390/s23136228.
Article PubMed PubMed Central Google Scholar
Xiao X, Lian S, Luo Z, Li S. Weighted Res-UNet for high-quality retina vessel segmentation. In: Proceedings of the 2018 9th international conference on information technology in medicine and education (ITME), Hangzhou, China. pp. 327–331. 2018. https://doi.org/10.1109/ITME.2018.00080
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: NeurIPS, pages 5998–6008. 2017. https://doi.org/10.48550/arXiv.1706.03762
Chu X, Tian Z, Wang Y, Zhang B, Ren H, Wei X, Xia H, Shen C. Twins: revisiting the design of spatial attention in vision transformers. In: advances in neural information processing systems. 2021. https://doi.org/10.48550/arXiv.2104.13840
Fan Q, Huang H, Guan J, He R. Rethinking local perception in lightweight vision transformer. 2023. ArXiv, abs/2303.17803
Shi W, Caballero J, Husz´ar F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z. Real-time single image and video superresolution using an efficient sub-pixel convolutional neural network. Proceedings of the IEEE conference on CVPR; (2016). pp. 1874–1883
Comments (0)