An updated overview of radiomics-based artificial intelligence (AI) methods in breast cancer screening and diagnosis

Piechocki M, Koziołek W, Sroka D, Matrejek A, Miziołek P, Saiuk N, et al. Trends in incidence and mortality of gynecological and breast cancers in Poland (1980–2018). Clin Epidemiol. 2022;14:95–114.

Article  PubMed  PubMed Central  Google Scholar 

Kakileti ST, Madhu HJ, Manjunath G, Wee L, Dekker A, Sampangi S. Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artif Intell Med. 2020;105: 101854.

Article  PubMed  Google Scholar 

Monticciolo DL, Malak SF, Friedewald SM, Eby PR, Newell MS, Moy L, et al. Breast cancer screening recommendations inclusive of all women at average risk: update from the ACR and society of breast imaging. J Am Coll Radiol. 2021;18(9):1280–8.

Article  PubMed  Google Scholar 

Meenalochini G, Ramkumar S. Survey of machine learning algorithms for breast cancer detection using mammogram images. Mater Today Proc. 2021;37:2738–43.

Article  Google Scholar 

Pesapane F, Rotili A, Agazzi GM, Botta F, Raimondi S, Penco S, et al. Recent radiomics advancements in breast cancer: lessons and pitfalls for the next future. Curr Oncol. 2021;28(4):2351–72.

Article  PubMed  PubMed Central  Google Scholar 

Tzeng YT, Liu SI, Wang BW, Chen YC, Chang PM, Chen IS, et al. The efficacy of thrombin-gelatin matrix in hemostasis for large breast tumor after vacuum-assisted breast biopsy. J Pers Med. 2022. https://doi.org/10.3390/jpm12020301.

Article  PubMed  PubMed Central  Google Scholar 

Gillies RJ, Schabath MB. Radiomics improves cancer screening and early detection. Cancer Epidemiol Biomarkers Prev. 2020;29(12):2556–67.

Article  CAS  PubMed  Google Scholar 

Ghelich Oghli M, Shabanzadeh A, Moradi S, Sirjani N, Gerami R, Ghaderi P, et al. Automatic fetal biometry prediction using a novel deep convolutional network architecture. Phys Med. 2021;88:127–37.

Article  PubMed  Google Scholar 

Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, et al. How radiomics can improve breast cancer diagnosis and treatment. J Clin Med. 2023;12(4):1372.

Article  PubMed  PubMed Central  Google Scholar 

Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast cancer classification and prediction. Semin Cancer Biol. 2021;72:238–50.

Article  CAS  PubMed  Google Scholar 

Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat. 2018;169(2):217–29.

Article  PubMed  Google Scholar 

Crivelli P, Ledda RE, Parascandolo N, Fara A, Soro D, Conti M. A new challenge for radiologists: radiomics in breast cancer. Biomed Res Int. 2018;2018(1):6120703.

PubMed  PubMed Central  Google Scholar 

Lee SH, Park H, Ko ES. Radiomics in breast imaging from techniques to clinical applications: a review. Korean J Radiol. 2020;21(7):779–92.

Article  PubMed  PubMed Central  Google Scholar 

Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of radiomics in breast cancer diagnosis and prognostication. The Breast. 2020;49:74–80.

Article  PubMed  Google Scholar 

Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.

Article  PubMed  Google Scholar 

Press RH, Shu HG, Shim H, Mountz JM, Kurland BF, Wahl RL, et al. The use of quantitative imaging in radiation oncology: a quantitative imaging network (QIN) perspective. Int J Radiat Oncol Biol Phys. 2018;102(4):1219–35.

Article  PubMed  PubMed Central  Google Scholar 

Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. 2016. arXiv preprint arXiv:161207003.

Ma M, Gan L, Jiang Y, Qin N, Li C, Zhang Y, et al. Radiomics analysis based on automatic image segmentation of DCE-MRI for predicting triple-negative and nontriple-negative breast cancer. Comput Math Methods Med. 2021;2021:2140465.

Article  PubMed  PubMed Central  Google Scholar 

Demircioğlu A. The effect of preprocessing filters on predictive performance in radiomics. Eur Radiol Exp. 2022;6(1):40.

Article  PubMed  PubMed Central  Google Scholar 

Debbi K, Habert P, Grob A, Loundou A, Siles P, Bartoli A, et al. Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance. Insights Imaging. 2023;14(1):64.

Article  PubMed  PubMed Central  Google Scholar 

Demircioğlu A. Benchmarking feature selection methods in radiomics. Investigat Radiol. 2022;57(7):433–43.

Article  Google Scholar 

Depeursinge A, Andrearczyk V, Whybra P, van Griethuysen J, Müller H, Schaer R, et al. Standardised convolutional filtering for radiomics. 2020. arXiv preprint arXiv:200605470.

Kim SM, Kim Y, Jeong K, Jeong H, Kim J. Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography. Ultrasonography. 2018;37(1):36–42.

Article  PubMed  Google Scholar 

Guiot J, Vaidyanathan A, Deprez L, Zerka F, Danthine D, Frix A-N, et al. A review in radiomics: making personalized medicine a reality via routine imaging. Med Res Rev. 2022;42(1):426–40.

Article  PubMed  Google Scholar 

Teng X, Zhang J, Zwanenburg A, Sun J, Huang Y, Lam S, et al. Building reliable radiomic models using image perturbation. Sci Rep. 2022;12(1):10035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim M, Lee JH, Joo L, Jeong B, Kim S, Ham S, et al. Development and validation of a model using radiomics features from an apparent diffusion coefficient map to diagnose local tumor recurrence in patients treated for head and neck squamous cell carcinoma. Korean J Radiol. 2022;23(11):1078–88.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Cao G, Pang H, Li J, Yao X. Development and validation of radiomics machine learning model based on contrast-enhanced computed tomography to predict axillary lymph node metastasis in breast cancer. Biomol Biomed. 2023;23(2):317–26.

PubMed  PubMed Central  Google Scholar 

Mezzadri G, Laloë T, Mathy F, Reynaud-Bouret P. Hold-out strategy for selecting learning models: application to categorization subjected to presentation orders. J Math Psychol. 2022;109: 102691.

Article  Google Scholar 

Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5(1):4006.

Article  CAS  PubMed  Google Scholar 

Rashid HU, Ibrikci T, Paydaş S, Binokay F, Çevik U. Analysis of breast cancer classification robustness with radiomics feature extraction and deep learning techniques. Expert Syst. 2022;39(8): e13018.

Article  Google Scholar 

Reig B. Radiomics and deep learning methods in expanding the use of screening breast MRI. Eur Radiol. 2021;31(8):5863–5.

Article  PubMed  Google Scholar 

Daimiel Naranjo I, Gibbs P, Reiner JS, Lo Gullo R, Thakur SB, Jochelson MS, et al. Breast lesion classification with multiparametric breast MRI using radiomics and machine learning: a comparison with radiologists’ performance. Cancers (Basel). 2022;14(7):1743.

Article  PubMed  Google Scholar 

Parekh VS, Jacobs MA. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer. 2017;3:43.

Article  PubMed  PubMed Central  Google Scholar 

Tagliafico AS, Mariscotti G, Valdora F, Durando M, Nori J, La Forgia D, et al. A prospective comparative trial of adjunct screening with tomosynthesis or ultrasound in women with mammography-negative dense breasts (ASTOUND-2). Eur J Cancer. 2018;104:39–46.

Article  PubMed  Google Scholar 

Tsougos I, Vamvakas A, Kappas C, Fezoulidis I, Vassiou K. Application of radiomics and decision support systems for breast mr differential diagnosis. Comput Math Methods Med. 2018;2018(1):7417126.

PubMed  PubMed Central 

Comments (0)

No login
gif