Mandrik O, Zielonke N, Meheus F, Hans Severens JL, Guha N, Acosta RH, Murillo R. Systematic reviews as a ‘lens of evidence’: determinants of benefits and harms of breast cancer screening. Int J Cancer. 2019;145(4):994–1006. https://doi.org/10.1002/ijc.32211.
Article CAS PubMed PubMed Central Google Scholar
Soni A, Ren Zh, Hameed O, Chanda D, Morgan ChJ, Siegal GP, et al. Breast cancer subtypes predispose the site of distant metastases. Am J Clin Pathol. 2015;143(4):471–8. https://doi.org/10.1309/AJCPYO5FSV3UPEXS.
Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51. https://doi.org/10.1016/S1470-2045(12)70425-4.
Article PubMed Central Google Scholar
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–56. https://doi.org/10.1016/j.talanta.2018.02.088.
Article CAS PubMed Google Scholar
Malekzadeh R, Babaye Abdollahi B, Ghorbani M, Pirayesh Islamian J, Mortezazadeh T. Trastuzumab conjugated PEG–Fe3O4@ Au nanoparticle as an MRI biocompatible nano-contrast agent. Int J Polym Mater Polym Biomater. 2023;72(10):759–70. https://doi.org/10.1080/00914037.2022.2058944.
Ziyaee S, Malekzadeh R, Ghorbani M, Nasiri Motlagh B, Asghariazar V, Mortezazadeh T. Preparation of MnO2@ poly-(DMAEMA-co-IA)-conjugated methotrexate nano-complex for MRI and radiotherapy of breast cancer application. Magn Reson Mater Phys, Biol Med. 2023. https://doi.org/10.1007/s10334-023-01091-1.
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis photodyn Ther. 2004;1(4):279–93. https://doi.org/10.1016/S1572-1000(05)00007-4.
Article CAS PubMed PubMed Central Google Scholar
Malekzadeh R, Mortezazadeh T, Abdulsahib WK, Hamblin MR, Mansoori B, Alsaikhan F, Zeng B. Nanoarchitecture-based photothermal ablation of cancer: a systematic review. Environ Res. 2023. https://doi.org/10.1016/j.envres.2023.116526.
Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, et al. Nanoparticle-assisted ultrasound: a special focus on sonodynamic therapy against cancer. Chem Eng J. 2018;340:155–72.
Article CAS PubMed PubMed Central Google Scholar
Alipour B, Mortezazadeh T, Abdulsahib WK, Arzhang A, Malekzadeh R, Farhood B. A systematic review of multimodal application of quantum dots in breast cancer diagnosis: effective parameters, status and future perspectives. J Drug Deliv Sci Technol. 2023. https://doi.org/10.1016/j.jddst.2023.104682.
Ayyami Y, Dastgir M, Ghorbani M, Jangjoo AG, Pourfarshid A, Malekzadeh R, Mortezazadeh T. Characterization and application of targeted MnO2/CS@ ALA-MTX nano-radiosensitizers for boosting X-ray radiotherapy of brain tumors. Colloids Surf, A. 2024;692:133975. https://doi.org/10.2217/nnm.14.100.
Costley D, Mc Ewan C, Fowley C, McHale AP, Atchison J, Nomikou N, et al. Treating cancer with sonodynamic therapy: a review. Int J Hyperth. 2015;31(2):107–17. https://doi.org/10.3109/02656736.2014.992484.
Abdollahi BB, Ghorbani M, Hamishekar H, Malekzadeh R, Farajollahi A. Synthesis and characterization of actively HER-2 Targeted Fe3O4@ Au nanoparticles for molecular radiosensitization of breast cancer. BioImpacts. 2022. https://doi.org/10.34172/bi.2022.23682.
Rahman WN, Corde S, Yagi N, Abdul Aziz SA, Annabell N, Geso M. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. Int J Nanomed. 2014;9:2459. https://doi.org/10.2147/IJN.S59471.
Mello RS, Callisen H, Winter J, Kagan AR, Norman A. Radiation dose enhancement in tumors with iodine. Med phys. 1983;10(1):75–8. https://doi.org/10.1118/1.595378.
Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RB, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719–28. https://doi.org/10.1667/RR1984.1.
Article CAS PubMed Google Scholar
Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr biol. 2017;27(14):713–5. https://doi.org/10.1016/j.cub.2017.05.064.
Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436–50. https://doi.org/10.1039/b311900a.
Article CAS PubMed PubMed Central Google Scholar
Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7. https://doi.org/10.1038/nrc1071.
Article CAS PubMed Google Scholar
Wu J, Han H, Jin Q, Li Z, Li H, Ji J. Design and proof of programmed 5-aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Appl Mater Interfaces. 2017;9(17):14596–605. https://doi.org/10.1021/acsami.6b15853.
Article CAS PubMed Google Scholar
Guo S, Sun X, Cheng J, Xu H, Dan J, Shen J, et al. Apoptosis of THP-1 macrophages induced by protoporphyrin IX-mediated sonodynamic therapy. Int J Nanomed. 2013;8:2239. https://doi.org/10.2147/IJN.S43717.
Reinert M, Piffareti D, Wilzbach M, Hauger C, Guckler R, Marchi F, et al. Quantitative modulation of PpIX fluorescence and improved glioma visualization. Frontiers Surgery. 2019;6:41. https://doi.org/10.3389/fsurg.2019.00041.
Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience. J Photochem Photobiol B: Biol. 1990;6(1–2):143–8. https://doi.org/10.1016/1011-1344(90)85083-9.
Binkley JM, Harris SR, Levangie PK, Pearl M, Guglielmino J, Kraus V, et al. Patient perspectives on breast cancer treatment side effects and the prospective surveillance model for physical rehabilitation for women with breast cancer. Cancer. 2012;118(S8):2207–16. https://doi.org/10.1002/cncr.27469.
Rosa S, Connolly C, Schettino G, Butterworth K, Prise KM. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol. 2017;8(1):1–25. https://doi.org/10.1186/s12645-017-0026-0.
Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nature Rev Cancer. 2006;6(9):702–13. https://doi.org/10.1038/nrc1950.
Abdelkader NF, El-Batal AI, Amin YM, Hawas AM, Hassan SH, Eid NI. Neuroprotective effect of gold nanoparticles and alpha-lipoic acid mixture against radiation-induced brain damage in rats. Int J Mole Sci. 2022;23(17):9640. https://doi.org/10.3390/ijms23179640.
Moses SL, Edwards VM, Brantley E. Cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells, without harming MCF-10A healthy cells. J Nanomed Nanotechnol. 2016;7(369):2. https://doi.org/10.4172/2157-7439.1000369.
Zhang J, Zhao T, Han F, Hu Y, Li Y. Photothermal and gene therapy combined with immunotherapy to gastric cancer by the gold nanoshell-based system. J Nanobiotechnol. 2019;17(1):1–11. https://doi.org/10.1186/s12951-019-0515-x.
Darfarin G, Salehi R, Alizadeh E, Nasiri Motlagh B, Akbarzadeh A, Farajollahi A. The effect of SiO2/Au core–shell nanoparticles on breast cancer cell’s radiotherapy. Art Cells, Nanomed Biotechnol. 2018;46(2):836–46. https://doi.org/10.1080/21691401.2018.1470526.
Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010;55(11):3045. https://doi.org/10.1088/0031-9155/55/11/004.
Comments (0)