Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics, 2024. CA Cancer J Clin 74(1):12–49
Azari F, Kennedy G, Singhal S (2020) Intraoperative detection and assessment of lung nodules. Surg Oncol Clin N Am 29(4):525–541
Article PubMed PubMed Central Google Scholar
Tipirneni KE, Warram JM, Moore LS et al (2017) Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg 266(1):36–47
Pogue BW, Rosenthal EL, Achilefu S, van Dam GM (2018) Perspective review of what is needed for molecular-specific fluorescence-guided surgery. J Biomed Opt 23(10):1–9. https://doi.org/10.1117/1.JBO.23.10.100601
Kennedy GT, Azari FS, Chang A et al (2023) Single-institution experience of 500 pulmonary resections guided by intraoperative molecular imaging. J Thorac Cardiovasc Surg 165(6):1928-1938.e1. https://doi.org/10.1016/j.jtcvs.2022.12.023
Article PubMed PubMed Central Google Scholar
Kennedy GT, Azari FS, Chang A et al (2022) Comparative experience of short-wavelength versus long-wavelength fluorophores for intraoperative molecular imaging of lung cancer. Ann Surg 276(4):711–719. https://doi.org/10.1097/SLA.0000000000005596
Keating J, Newton A, Venegas O et al (2017) Near-infrared intraoperative molecular imaging can locate metastases to the lung. Ann Thorac Surg 103(2):390–398
Kennedy GT, Newton A, Predina J, Singhal S (2017) Intraoperative near-infrared imaging of mesothelioma. Transl Lung Cancer Res 6(3):279–284
Article CAS PubMed PubMed Central Google Scholar
Kennedy GT, Azari FS, Newton AD et al (2021) Use of near-infrared molecular imaging for localizing visually occult parathyroid glands in ectopic locations. JAMA Otolaryngol Head Neck Surg 147(7):669–671
Article PubMed PubMed Central Google Scholar
Kennedy GT, Azari FS, Callans D, Singhal S (2021) Stellate ganglion localization using near-infrared intraoperative imaging during cardiac sympathetic denervation. Heart Rhythm 18(10):1807–1808
Article PubMed PubMed Central Google Scholar
Azari F, Kennedy GT, Zhang K et al (2022) Impact of intraoperative molecular imaging after fluorescent-guided pulmonary metastasectomy for sarcoma. J Am Coll Surg 234(5):748–758
Article PubMed PubMed Central Google Scholar
Keating J, Tchou J, Okusanya O et al (2016) Identification of breast cancer margins using intraoperative near-infrared imaging. J Surg Oncol 113(5):508–514
Article CAS PubMed PubMed Central Google Scholar
Kennedy GT, Azari FS, Bernstein E et al (2022) First-in-human results of targeted intraoperative molecular imaging for visualization of ground glass opacities during robotic pulmonary resection. Transl Lung Cancer Res 11(8):1567–1577
Article CAS PubMed PubMed Central Google Scholar
Azari F, Kennedy GT, Chang A et al (2024) Molecular imaging in precision-cut non-small cell lung cancer slices. Ann Thorac Surg 117(2):458–465
Azari F, Kennedy G, Bernstein E et al (2023) Evaluation of OTL38-generated tumor-to-background ratio in intraoperative molecular imaging-guided lung cancer resections. Mol Imaging Biol 25(1):85–96
Kennedy GT, Azari FS, Bernstein E et al (2022) 3D specimen mapping expedites frozen section diagnosis of nonpalpable ground glass opacities. Ann Thorac Surg 114(6):2115–2123
Kennedy GT, Azari FS, Bernstein E et al (2022) Targeted detection of cancer at the cellular level during biopsy by near-infrared confocal laser endomicroscopy. Nat Commun 13(1):2711
Article CAS PubMed PubMed Central Google Scholar
Kennedy GT, Azari FS, Bernstein E et al (2022) Targeted detection of cancer cells during biopsy allows real-time diagnosis of pulmonary nodules. Eur J Nucl Med Mol Imaging 49(12):4194–4204
Article CAS PubMed PubMed Central Google Scholar
Kennedy GT, Azari FS, Bernstein E et al (2023) Three-dimensional near-infrared specimen mapping can identify the distance from the tumor to the surgical margin during resection of pulmonary ground glass opacities. Mol Imaging Biol 25(1):203–211
Article CAS PubMed Google Scholar
Kennedy GT, Okusanya OT, Keating JJ et al (2015) The optical biopsy: A novel technique for rapid intraoperative diagnosis of primary pulmonary adenocarcinomas. Ann Surg 262(4):602–609
Kennedy GT, Azari FS, Bernstein E et al (2022) A prostate-specific membrane antigen-targeted near-infrared conjugate for identifying pulmonary squamous cell carcinoma during resection. Mol Cancer Ther 21(4):546–554
Article CAS PubMed PubMed Central Google Scholar
Azari F, Kennedy GT, Chang A et al (2023) Glycoprotein receptor CEACAM5-targeted intraoperative molecular imaging tracer in non-small cell lung cancer. Ann Thorac Surg 116(3):631–641. https://doi.org/10.1016/j.athoracsur.2022.05.019
Azari F, Meijer RPJ, Kennedy GT et al (2023) Carcinoembryonic antigen-related cell adhesion molecule type 5 receptor-targeted fluorescent intraoperative molecular imaging tracer for lung cancer: A nonrandomized controlled trial. JAMA Netw Open 6(1):e2252885
Article PubMed PubMed Central Google Scholar
Pogue BW, Rosenthal EL, Achilefu S, van Dam GM (2018) Perspective review of what is needed for molecular-specific fluorescence-guided surgery. J Biomed Opt 23(10):1–9
Kennedy GT, Holt DE, Azari FS et al (2022) A cathepsin-targeted quenched activity-based probe facilitates enhanced detection of human tumors during resection. Clin Cancer Res 28(17):3729–3741
Article CAS PubMed PubMed Central Google Scholar
Bou-Samra P, Chang A, Guo E et al (2023) Cathepsin detection to identify malignant cells during robotic pulmonary resection. Transl Lung Cancer Res 12(12):2370–2380
Article CAS PubMed PubMed Central Google Scholar
Kennedy GT, Azari FS, Nadeem B et al (2022) Preclinical evaluation of an activity-based probe for intraoperative imaging of esophageal cancer. Mol Imaging 2022:5447290
Article PubMed PubMed Central Google Scholar
Voskuil FJ, Steinkamp PJ, Zhao T et al (2020) Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat Commun 11(1):3257
Article CAS PubMed PubMed Central Google Scholar
Kennedy GT, Azari FS, Chang A et al (2023) A pH-activatable nanoprobe labels diverse histologic subtypes of human lung cancer during resection. Mol Imaging Biol 25(5):824–832
Comments (0)