Small molecule inhibitors of the VEGF and tyrosine kinase for the treatment of cervical cancer

Guimarães YM, Godoy LR, Longatto-Filho A, dos Reis R. Management of early-stage cervical cancer: a literature review. Cancers (Basel). 2022;14:575.

Article  PubMed  Google Scholar 

Eifel PJ, Klopp AH, Berek JS, Konstantinopoulos PA. Cancer of the cervix, vagina, and vulva. DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology. Europe: Wolters Kluwer Health Pharma Solutions (Europe) Ltd; 2018. p. 1172–210.

Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

Article  PubMed  Google Scholar 

Tarver T. American cancer society. cancer facts and figures 2014. J Consumer Health Internet. 2012;16:366–7.

Article  Google Scholar 

del Campo JM, Prat A, Gil-Moreno A, Pérez J, Parera M. Update on novel therapeutic agents for cervical cancer. Gynecol Oncol. 2008;110:S72–6.

Article  PubMed  Google Scholar 

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

Article  CAS  PubMed  Google Scholar 

Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

Article  CAS  PubMed  Google Scholar 

Du S, Qian J, Tan S, Li W, Liu P, Zhao J, et al. Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer. Cancer Lett. 2022;529:168–79.

Article  CAS  PubMed  Google Scholar 

Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

Article  CAS  PubMed  Google Scholar 

Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.

Article  CAS  PubMed  Google Scholar 

Paul MK, Mukhopadhyay AK. Tyrosine kinase–role and significance in cancer. Int J Med Sci. 2004;1:101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morabito A, De Maio E, Di Maio M, Normanno N, Perrone F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist. 2006;11:753–64.

Article  CAS  PubMed  Google Scholar 

Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007;98:1505–11. https://doi.org/10.1111/j.1349-7006.2007.00546.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol. 2021;102:001540.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomao F, Papa A, Rossi L, Zaccarelli E, Caruso D, Zoratto F, et al. Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther. 2014. https://doi.org/10.2147/OTT.S68286.

Article  PubMed  PubMed Central  Google Scholar 

Wu MP, Tzeng CC, Wu LW, Huang KF, Chou CY. Thrombospondin-1 acts as a fence to inhibit angiogenesis that occurs during cervical carcinogenesis. The Cancer Journal. 2004;10:27–32.

Article  CAS  PubMed  Google Scholar 

Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1979;1994(265):1582–4.

Google Scholar 

Kim MK, Kim HS, Kim SH, Oh JM, Han JY, Lim JM, et al. Human papillomavirus type 16 E5 oncoprotein as a new target for cervical cancer treatment. Biochem Pharmacol. 2010;80:1930–5.

Article  CAS  PubMed  Google Scholar 

Liebrich C, Brummer O, Von Wasielewski R, Wegener G, Meijer C, Iftner T, et al. Primary cervical cancer truly negative for high-risk human papillomavirus is a rare but distinct entity that can affect virgins and young adolescents. Eur J Gynaecol Oncol. 2009;30:45–8.

CAS  PubMed  Google Scholar 

Hildesheim A, Hadjimichael O, Schwartz PE, Wheeler CM, Barnes W, Lowell DM, et al. Risk factors for rapid-onset cervical cancer. Am J Obstet Gynecol. 1999;180:571–7.

Article  CAS  PubMed  Google Scholar 

Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci. 2012;109:10516–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petry KU. HPV and cervical cancer. Scand J Clin Lab Invest. 2014;74:59–62.

Article  CAS  Google Scholar 

Petry KU, Luyten A, Justus A, Iftner A, Strehlke S, Reinecke-Lüthge A, et al. Prevalence of high-risk HPV types and associated genital diseases in women born in 1988/89 or 1983/84–results of WOLVES, a population-based epidemiological study in Wolfsburg Germany. BMC Infect Dis. 2013;13:1–11.

Article  Google Scholar 

Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015;138:190–200.

Article  PubMed  Google Scholar 

Yang X, Da M, Zhang W, Qi Q, Zhang C, Han S. Role of Lactobacillus in cervical cancer. Cancer Manag Res. 2018;10:1219–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovachev SM. Cervical cancer and vaginal microbiota changes. Arch Microbiol. 2020;202:323–7.

Article  CAS  PubMed  Google Scholar 

Paradkar PH, Joshi JV, Mertia PN, Agashe SV, Vaidya RA. Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pacific J Cancer Prev. 2014. https://doi.org/10.7314/APJCP.2014.15.9.3851.

Article  Google Scholar 

Bermúdez-Morales VH, Gutiérrez LX, Alcocer-González JM, Burguete A, Madrid-Marina V. Correlation between IL-10 Gene expression and HPV infection in cervical cancer: a mechanism for immune response escape. Cancer Invest. 2008;26:1037–43. https://doi.org/10.1080/07357900802112693.

Article  CAS  PubMed  Google Scholar 

Bermúdez-Morales VH, Peralta-Zaragoza O, Alcocer-González JM, Moreno J, Madrid-Marina V. IL-10 expression is regulated by HPV E2 protein in cervical cancer cells. Mol Med Rep. 2011;4:369–75.

PubMed  Google Scholar 

Tan B, Wikan N, Lin S, Thaklaewphan P, Potikanond S, Nimlamool W. Inhibitory actions of oxyresveratrol on the PI3K/AKT signaling cascade in cervical cancer cells. Biomed Pharmacother. 2024;170:115982.

Article  CAS  PubMed  Google Scholar 

Morgan EL, Macdonald A. Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1—NFκB—IL-6 signalling axis. PLoS Pathog. 2019;15:e1007835.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, et al. E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ. 2021;28:1669–87.

Article  CAS  PubMed  Google Scholar 

Luna AJ, Sterk RT, Griego-Fisher AM, Chung JY, Berggren KL, Bondu V, et al. MEK/ERK signaling is a critical regulator of high-risk human papillomavirus oncogene expression revealing therapeutic targets for HPV-induced tumors. PLoS Pathog. 2021;17:e1009216.

Comments (0)

No login
gif