Guimarães YM, Godoy LR, Longatto-Filho A, dos Reis R. Management of early-stage cervical cancer: a literature review. Cancers (Basel). 2022;14:575.
Eifel PJ, Klopp AH, Berek JS, Konstantinopoulos PA. Cancer of the cervix, vagina, and vulva. DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology. Europe: Wolters Kluwer Health Pharma Solutions (Europe) Ltd; 2018. p. 1172–210.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
Tarver T. American cancer society. cancer facts and figures 2014. J Consumer Health Internet. 2012;16:366–7.
del Campo JM, Prat A, Gil-Moreno A, Pérez J, Parera M. Update on novel therapeutic agents for cervical cancer. Gynecol Oncol. 2008;110:S72–6.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.
Article CAS PubMed Google Scholar
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.
Article CAS PubMed Google Scholar
Du S, Qian J, Tan S, Li W, Liu P, Zhao J, et al. Tumor cell-derived exosomes deliver TIE2 protein to macrophages to promote angiogenesis in cervical cancer. Cancer Lett. 2022;529:168–79.
Article CAS PubMed Google Scholar
Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.
Article CAS PubMed Google Scholar
Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.
Article CAS PubMed Google Scholar
Paul MK, Mukhopadhyay AK. Tyrosine kinase–role and significance in cancer. Int J Med Sci. 2004;1:101.
Article CAS PubMed PubMed Central Google Scholar
Morabito A, De Maio E, Di Maio M, Normanno N, Perrone F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist. 2006;11:753–64.
Article CAS PubMed Google Scholar
Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007;98:1505–11. https://doi.org/10.1111/j.1349-7006.2007.00546.x.
Article CAS PubMed PubMed Central Google Scholar
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol. 2021;102:001540.
Article CAS PubMed PubMed Central Google Scholar
Tomao F, Papa A, Rossi L, Zaccarelli E, Caruso D, Zoratto F, et al. Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther. 2014. https://doi.org/10.2147/OTT.S68286.
Article PubMed PubMed Central Google Scholar
Wu MP, Tzeng CC, Wu LW, Huang KF, Chou CY. Thrombospondin-1 acts as a fence to inhibit angiogenesis that occurs during cervical carcinogenesis. The Cancer Journal. 2004;10:27–32.
Article CAS PubMed Google Scholar
Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1979;1994(265):1582–4.
Kim MK, Kim HS, Kim SH, Oh JM, Han JY, Lim JM, et al. Human papillomavirus type 16 E5 oncoprotein as a new target for cervical cancer treatment. Biochem Pharmacol. 2010;80:1930–5.
Article CAS PubMed Google Scholar
Liebrich C, Brummer O, Von Wasielewski R, Wegener G, Meijer C, Iftner T, et al. Primary cervical cancer truly negative for high-risk human papillomavirus is a rare but distinct entity that can affect virgins and young adolescents. Eur J Gynaecol Oncol. 2009;30:45–8.
Hildesheim A, Hadjimichael O, Schwartz PE, Wheeler CM, Barnes W, Lowell DM, et al. Risk factors for rapid-onset cervical cancer. Am J Obstet Gynecol. 1999;180:571–7.
Article CAS PubMed Google Scholar
Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci. 2012;109:10516–21.
Article CAS PubMed PubMed Central Google Scholar
Petry KU. HPV and cervical cancer. Scand J Clin Lab Invest. 2014;74:59–62.
Petry KU, Luyten A, Justus A, Iftner A, Strehlke S, Reinecke-Lüthge A, et al. Prevalence of high-risk HPV types and associated genital diseases in women born in 1988/89 or 1983/84–results of WOLVES, a population-based epidemiological study in Wolfsburg Germany. BMC Infect Dis. 2013;13:1–11.
Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015;138:190–200.
Yang X, Da M, Zhang W, Qi Q, Zhang C, Han S. Role of Lactobacillus in cervical cancer. Cancer Manag Res. 2018;10:1219–29.
Article CAS PubMed PubMed Central Google Scholar
Kovachev SM. Cervical cancer and vaginal microbiota changes. Arch Microbiol. 2020;202:323–7.
Article CAS PubMed Google Scholar
Paradkar PH, Joshi JV, Mertia PN, Agashe SV, Vaidya RA. Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pacific J Cancer Prev. 2014. https://doi.org/10.7314/APJCP.2014.15.9.3851.
Bermúdez-Morales VH, Gutiérrez LX, Alcocer-González JM, Burguete A, Madrid-Marina V. Correlation between IL-10 Gene expression and HPV infection in cervical cancer: a mechanism for immune response escape. Cancer Invest. 2008;26:1037–43. https://doi.org/10.1080/07357900802112693.
Article CAS PubMed Google Scholar
Bermúdez-Morales VH, Peralta-Zaragoza O, Alcocer-González JM, Moreno J, Madrid-Marina V. IL-10 expression is regulated by HPV E2 protein in cervical cancer cells. Mol Med Rep. 2011;4:369–75.
Tan B, Wikan N, Lin S, Thaklaewphan P, Potikanond S, Nimlamool W. Inhibitory actions of oxyresveratrol on the PI3K/AKT signaling cascade in cervical cancer cells. Biomed Pharmacother. 2024;170:115982.
Article CAS PubMed Google Scholar
Morgan EL, Macdonald A. Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1—NFκB—IL-6 signalling axis. PLoS Pathog. 2019;15:e1007835.
Article CAS PubMed PubMed Central Google Scholar
Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, et al. E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ. 2021;28:1669–87.
Article CAS PubMed Google Scholar
Luna AJ, Sterk RT, Griego-Fisher AM, Chung JY, Berggren KL, Bondu V, et al. MEK/ERK signaling is a critical regulator of high-risk human papillomavirus oncogene expression revealing therapeutic targets for HPV-induced tumors. PLoS Pathog. 2021;17:e1009216.
Comments (0)