Zraik IM, Heß-Busch Y. Management of chemotherapy side effects and their long-term sequelae. Urol A. 2021;60:862–71. https://doi.org/10.1007/s00120-021-01569-7.
Wang Z, Li H, Gou L, Li W, Wang Y. Antibody–drug conjugates: recent advances in payloads. Acta Pharm Sin B. 2023;13:4025–59. https://doi.org/10.1016/j.apsb.2023.06.015.
Article CAS PubMed PubMed Central Google Scholar
Ponziani S, Di Vittorio G, Pitari G, Cimini AM, Ardini M, Gentile R, Iacobelli S, Sala G, Capone E, Flavell DJ, Ippoliti R, Giansanti F. Antibody-drug conjugates: the new frontier of chemotherapy. Int J Mol Sci. 2020;21:5510. https://doi.org/10.3390/ijms21155510.
Article CAS PubMed PubMed Central Google Scholar
Biomedicines | Free Full-Text | Advances and limitations of antibody drug conjugates for cancer. n.d. https://www.mdpi.com/2227-9059/9/8/872. Accessed 1 May 2024.
Xu X, Zhang J, Wang T, Li J, Rong Y, Wang Y, Bai C, Yan Q, Ran X, Wang Y, Zhang T, Sun J, Jiang Q. Emerging non-antibody-drug conjugates (non-ADCs) therapeutics of toxins for cancer treatment. Acta Pharm Sin B. 2023. https://doi.org/10.1016/j.apsb.2023.11.029.
Article PubMed PubMed Central Google Scholar
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–80. https://doi.org/10.1038/nrc2394.
Article CAS PubMed Google Scholar
Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates | Science. n.d. https://doi.org/10.1126/science.8327892. Accessed 1 May 2024.
Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–9. https://doi.org/10.1038/205698a0.
Article CAS PubMed Google Scholar
Paclitaxel (Taxol) | N Engl J Med. n.d. https://doi.org/10.1056/NEJM199504133321507. Accessed 1 May 2024.
Johnson DA, Laguzza BC. Antitumor xenograft activity with a conjugate of a vinca derivative and the squamous carcinoma-reactive monoclonal antibody PF1/D. Can Res. 1987;47:3118–22.
Dillman RO, Johnson DE, Shawler DL, Koziol JA. Superiority of an acid-labile daunorubicin-monoclonal antibody immunoconjugate compared to free drug1. Can Res. 1988;48:6097–102.
Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, Young L, Healey D, Onetto N, Slichenmyer W. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol. 1999;17:478–478. https://doi.org/10.1200/JCO.1999.17.2.478.
Article CAS PubMed Google Scholar
Niell BL, Jochelson MS, Amir T, Brown A, Adamson M, Baron P, Bennett DL, Chetlen A, Dayaratna S, Freer PE, Ivansco LK, Klein KA, Malak SF, Mehta TS, Moy L, Neal CH, Newell MS, Richman IB, Schonberg M, Small W, Ulaner GA, Slanetz PJ. ACR Appropriateness Criteria® female breast cancer screening: 2023 update. J Am Coll Radiol. 2023;21(2024):S126–43. https://doi.org/10.1016/j.jacr.2024.02.019.
Sharma P. Update on the treatment of early-stage triple-negative breast cancer. Curr Treat Opt Oncol. 2018;19:22. https://doi.org/10.1007/s11864-018-0539-8.
Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer (Auckl). 2015;92s:BCBCR.S29420. https://doi.org/10.4137/BCBCR.S29420.
Molecular portraits of human breast tumours | Nature. n.d. https://www.nature.com/articles/35021093. Accessed 9 June 2024.
Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale A-L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 2001;98:10869–74. https://doi.org/10.1073/pnas.191367098.
Article PubMed PubMed Central Google Scholar
JCI—identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. n.d. https://www.jci.org/articles/view/45014?elq=2f1e11aad7e740cf9a3d8bfd51c3b4f4. Accessed 9 June 2024.
Wang D-Y, Jiang Z, Ben-David Y, Woodgett JR, Zacksenhaus E. Molecular stratification within triple-negative breast cancer subtypes. Sci Rep. 2019;9:19107. https://doi.org/10.1038/s41598-019-55710-w.
Article CAS PubMed PubMed Central Google Scholar
De Soto JA, Wang X, Tominaga Y, Wang R-H, Cao L, Qiao W, Li C, Xu X, Skoumbourdis AP, Prindiville SA, Thomas CJ, Deng C-X. The inhibition and treatment of breast cancer with poly(ADP-ribose) polymerase (PARP-1) inhibitors. Int J Biol Sci. 2006;2:179–85.
Article PubMed PubMed Central Google Scholar
Hu X-C, Zhang J, Xu B-H, Cai L, Ragaz J, Wang Z-H, Wang B-Y, Teng Y-E, Tong Z-S, Pan Y-Y, Yin Y-M, Wu C-P, Jiang Z-F, Wang X-J, Lou G-Y, Liu D-G, Feng J-F, Luo J-F, Sun K, Gu Y-J, Wu J, Shao Z-M. Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2015;16:436–46. https://doi.org/10.1016/S1470-2045(15)70064-1.
Article CAS PubMed Google Scholar
TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer | J Clin Oncol. n.d. https://doi.org/10.1200/jco.2008.26.15_suppl.1009. Accessed 9 June 2024.
Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, Blackwell K, Rugo H, Nabell L, Forero A, Stearns V, Doane AS, Danso M, Moynahan ME, Momen LF, Gonzalez JM, Akhtar A, Giri DD, Patil S, Feigin KN, Hudis CA, Traina TA, on behalf of the Translational Breast Cancer Research Consortium (TBCRC 011). Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 2013;19:5505–12. https://doi.org/10.1158/1078-0432.CCR-12-3327.
Article CAS PubMed PubMed Central Google Scholar
β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells | PLoS ONE. n.d. https://doi.org/10.1371/journal.pone.0117097. Accessed 9 June 2024.
Bhola NE, Balko JM, Dugger TC, Kuba MG, Sánchez V, Sanders M, Stanford J, Cook RS, Arteaga CL. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest. 2013;123:1348–58. https://doi.org/10.1172/JCI65416.
Article CAS PubMed PubMed Central Google Scholar
Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab | Breast Cancer | JAMA Oncology | JAMA Network. n.d. https://jamanetwork.com/journals/jamaoncology/article-abstract/2587051. Accessed 9 June 2024.
Nanda R, Chow LQM, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, Karantza V, Buisseret L. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 Study. J Clin Oncol. 2016;34:2460–7. https://doi.org/10.1200/JCO.2015.64.8931.
Article CAS PubMed PubMed Central Google Scholar
Yin L, Duan J-J, Bian X-W, Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. https://doi.org/10.1186/s13058-020-01296-5.
Article PubMed PubMed Central Google Scholar
Jeyachandran S, Chandrashekar K, Ganesan G, Alagarsamy L, Subbaraj GK, Kulanthaivel L. Triple-negative breast cancer (TNBC): clinical features and therapeutic targets. In: Pathak S, Banerjee A, Bisgin A, editors. Handbook of animal models and its uses in cancer research. Singapore: Springer Nature; 2022. p. 1–14. https://doi.org/10.1007/978-981-19-1282-5_41-1.
Al Jarroudi O, El Bairi K, Curigliano G, Afqir S. Antibody–drug conjugates: a new therapeutic approach for triple-negative breast cancer. In: Al Jarroudi O, El Bairi K, Curigliano G, editors. Breast cancer research and treatment: innovative concepts. Cham: Springer International Publishing; 2023. p. 1–27. https://doi.org/10.1007/978-3-031-33602-7_1.
Liu K, Li M, Li Y, Li Y, Chen Z, Tang Y, Yang M, Deng G, Liu H. A review of the clinical efficacy of FDA-approved antibody–drug conjugates in human cancers. Mol Cancer. 2024;23:62. https://doi.org/10.1186/s12943-024-01963-7.
Article CAS PubMed PubMed Central Google Scholar
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18:3–19. https://doi.org/10.1158/1541-7786.MCR-19-0582.
Article CAS PubMed Google Scholar
Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? | Br J Cancer. n.d. https://www.nature.com/articles/bjc2017367. Accessed 7 June 2024.
Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9:33–46. https://doi.org/10.1007/s13238-016-0323-0.
Article CAS PubMed Google Scholar
Optimizing conjugation chemistry, antibody conjugation site, and surface density in antibody–nanogel conjugates (ANCs) for cell-specific drug delivery. Bioconjug Chem. 2023; 34707–718. https://doi.org/10.1021/acs.bioconjchem.3c00034.
King TA, Walsh SJ, Kapun M, Wharton T, Krajcovicova S, Glossop MS, Spring DR. Disulfide re-bridging reagents for single-payload antibody-drug conjugates. Chem Commun. 2023;59:9868–71. https://doi.org/10.1039/D3CC02980H.
Comments (0)