Chen F, Wang L, Hong J, Jiang J, Zhou L (2024) Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models. J Am Med Inform Assoc 31(5):1172–1183
Ueda D, Kakinuma T, Fujita S et al (2024) Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol 42(1):3–15
Chen RJ, Wang JJ, Williamson DFK et al (2023) Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat Biomed Eng 7(6):719–742
Article PubMed PubMed Central Google Scholar
Ricci Lara MA, Echeveste R, Ferrante E (2022) Addressing fairness in artificial intelligence for medical imaging. Nat Commun 13(1):4581
Article CAS PubMed PubMed Central Google Scholar
Abràmoff MD, Tarver ME, Loyo-Berrios N et al (2023) Considerations for addressing bias in artificial intelligence for health equity. NPJ Digit Med 6(1):170
Article PubMed PubMed Central Google Scholar
Chin MH, Afsar-Manesh N, Bierman AS et al (2023) Guiding principles to address the impact of algorithm bias on racial and ethnic disparities in health and health care. JAMA Netw Open 6(12):e2345050
Article PubMed PubMed Central Google Scholar
Daneshjou R, Vodrahalli K, Novoa RA et al (2022) Disparities in dermatology AI performance on a diverse, curated clinical image set. Sci Adv 8(32):eabq6147
Article PubMed PubMed Central Google Scholar
Adleberg J, Wardeh A, Doo FX et al (2022) Predicting patient demographics from chest radiographs with deep learning. J Am Coll Radiol 19(10):1151–1161
Gichoya JW, Banerjee I, Bhimireddy AR et al (2022) AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health 4(6):e406–e414
Article CAS PubMed PubMed Central Google Scholar
Li D, Lin CT, Sulam J, Yi PH (2022) Deep learning prediction of sex on chest radiographs: a potential contributor to biased algorithms. Emerg Radiol 29(2):365–370
Yi PH, Wei J, Kim TK et al (2021) Radiology “forensics”: determination of age and sex from chest radiographs using deep learning. Emerg Radiol 28(5):949–954
Betzler BK, Yang HHS, Thakur S et al (2021) Gender prediction for a multiethnic population via deep learning across different retinal fundus photograph fields: retrospective cross-sectional study. JMIR Med Inform 9(8):e25165
Article PubMed PubMed Central Google Scholar
Chueh KM, Hsieh YT, Chen HH, Ma IH, Huang SL (2022) Identification of sex and age from macular optical coherence tomography and feature analysis using deep learning. Am J Ophthalmol 235:221–228
Gerrits N, Elen B, Craenendonck TV et al (2020) Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images. Sci Rep 10(1):9432
Article CAS PubMed PubMed Central Google Scholar
Kim YD, Noh KJ, Byun SJ et al (2020) Effects of hypertension, diabetes, and smoking on age and sex prediction from retinal fundus images. Sci Rep 10(1):4623
Article CAS PubMed PubMed Central Google Scholar
Munk MR, Kurmann T, Márquez-Neila P, Zinkernagel MS, Wolf S, Sznitman R (2021) Assessment of patient specific information in the wild on fundus photography and optical coherence tomography. Sci Rep 11(1):8621
Article CAS PubMed PubMed Central Google Scholar
Poplin R, Varadarajan AV, Blumer K et al (2018) Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2(3):158–164
Rim TH, Lee G, Kim Y et al (2020) Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms. Lancet Digit Health 2(10):e526–e536
Zhang L, Yuan M, An Z et al (2020) Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: a cross-sectional study of chronic diseases in central China. PLoS ONE 15(5):e0233166
Article CAS PubMed PubMed Central Google Scholar
Kwasny D, Hemmerling D (2021) Gender and age estimation methods based on speech using deep neural networks. Sensors (Basel) 21(14):4785
Tursunov A, Mustaqeem, Choeh JY, Kwon S (2021) Age and gender recognition using a convolutional neural network with a specially designed multi-attention module through speech spectrograms. Sensors (Basel) 21(17):5892. https://doi.org/10.3390/s21175892
Chen W, Sun Q, Chen X, Xie G, Wu H, Xu C (2021) Deep learning methods for heart sounds classification: a systematic review. Entropy (Basel) 23(6):667
Garcia-Mendez JP, Lal A, Herasevich S et al (2023) Machine learning for automated classification of abnormal lung sounds obtained from public databases: a systematic review. Bioengineering (Basel) 10(10):1155
Kapetanidis P, Kalioras F, Tsakonas C et al (2024) Respiratory diseases diagnosis using audio analysis and artificial intelligence: a systematic review. Sensors (Basel) 24(4):1173
Palaniappan R, Sundaraj K, Sundaraj S (2014) Artificial intelligence techniques used in respiratory sound analysis—a systematic review. Biomed Tech (Berl) 59(1):7–18
Santosh KC, Rasmussen N, Mamun M, Aryal S (2022) A systematic review on cough sound analysis for COVID-19 diagnosis and screening: is my cough sound COVID-19? PeerJ Comput Sci 8:e958
Article CAS PubMed PubMed Central Google Scholar
Sharan RV, Rahimi-Ardabili H (2023) Detecting acute respiratory diseases in the pediatric population using cough sound features and machine learning: a systematic review. Int J Med Inform 176:105093
Oliveira J, Renna F, Costa P, Nogueira M, Oliveira AC, Elola A, Ferreira C, Jorge A, Bahrami Rad A, Reyna M, Sameni R, Clifford G, Coimbra M (2022) The CirCor DigiScope Phonocardiogram Dataset (version 1.0.3). PhysioNet. https://doi.org/10.13026/tshs-mw03
Oliveira JH, Renna F, Costa P, Nogueira D, Oliveira C, Ferreira C, Jorge A, Mattos S, Hatem T, Tavares T, Elola A, Rad A, Sameni R, Clifford GD, Coimbra MT (2021) The CirCor DigiScope Dataset: from murmur detection to murmur classification. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2021.3137048
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov PC, Mark R et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220
Article CAS PubMed Google Scholar
Vasan RS, Larson MG, Levy D, Evans JC, Benjamin EJ (1997) Distribution and categorization of echocardiographic measurements in relation to reference limits: the Framingham Heart Study: formulation of a height- and sex-specific classification and its prospective validation. Circulation 96(6):1863–1873
Article CAS PubMed Google Scholar
St. Pierre SR, Peirlinck M, Kuhl E (2022) Sex matters: a comprehensive comparison of female and male hearts. Front Physiol. https
Comments (0)