Simulation study on penetration depth of light in the source–detector distance using a nine-layered skin tissue model in the visible wavelength range

Dawson, J.B., Barker, D.J., Ellis, D.J., Grassam, E., Cotterill, J.A., Fisher, G.W., Feather, J.W.: A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys. Med. Biol. 25(4), 695–709 (1980)

Article  Google Scholar 

Feather, J.W., Hajizadeh-Saffar, M., Leslie, G., Dawson, J.B.: A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments. Phys. Med. Biol. 34, 807–820 (1989)

Article  Google Scholar 

Harrison, D.K., Evans, S.D., Abbot, N.C., Beck, J.S., McCollum, P.T.: Spectrophotometric measurements of haemoglobin saturation and concentration in skin during the tuberculin reaction in normal human subjects. Clin. Phys. Physiol. Meas. 13, 349–363 (1992)

Article  Google Scholar 

Newton, D.J., Harrison, D.K., Delaney, C.J., Beck, J.S., McCollum, P.T.: Comparison of macro- and micro-lightguide spectrophotometric measurements of microvascular haemoglobin oxygenation in the tuberculin reaction in normal human skin. Physiol. Meas. 15, 115–128 (1994)

Article  Google Scholar 

Wallace, V.P., Crawford, D.C., Mortimer, P.S., Ott, R.J., Bamber, J.C.: Spectrophotometric assessment of pigmented skin lesion: methods and feature selection for evaluation of diagnostic performance. Phys. Med. Biol. 45, 735–751 (2000)

Article  Google Scholar 

Stratonnikov, A.A., Loschenov, V.B.: Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J. Biomed. Opt. 6, 457–467 (2001)

Article  ADS  Google Scholar 

Salomatina, E., Jiang, B., Novak, J., Yaroslavsky, A.N.: Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 11(6), 064026 (2006)

Article  ADS  Google Scholar 

Stamatas, G.N., Kollias, N.: In vivo documentation of cutaneous inflammation using spectral imaging. J. Biomed. Opt. 12(5), 051603 (2007)

Article  ADS  Google Scholar 

Zonios, G., Dimou, A., Bassukas, I., Galaris, D., Tsolakidis, A., Kaxiras, E.: Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection. J. Biomed. Opt. 13(1), 014017 (2008)

Article  ADS  Google Scholar 

Hirose, M., Toyota, S., Ojima, N., Ogawa-Ochiai, K., Tsumura, N.: Principal component analysis for surface reflection components and structure in facial images and synthesis of facial images for various ages. Opt. Rev. 24, 517–528 (2017)

Article  Google Scholar 

Imai, F.H., Tsumura, N., Haneishi, H., Miyake, Y.: Principal component analysis of skin color and its application to colorimetric color reproduction on CRT display and hard copy. J. Imaging Sci. Technol. 40, 422–430 (1996)

Article  Google Scholar 

Shimada, M., Masuda, Y., Yamada, Y., Itoh, M., Takahashi, M., Yatagai, T.: Explanation of human skin color by multiple linear regression analysis based on the modified Lambert-Beer law. Opt. Rev. 7(4), 348–352 (2000)

Article  Google Scholar 

Shimada, M., Yamada, Y., Itoh, M., Yatagai, T.: Melanin and blood concentration in human skin studied by multiple regression analysis: experiments. Phys. Med. Biol. 46, 2385–2395 (2001)

Article  Google Scholar 

Shimada, M., Yamada, Y., Itoh, M., Yatagai, T.: Melanin and blood concentration in a human skin model studied by multiple regression analysis: assessment by Monte Carlo simulation. Phys. Med. Biol. 46, 2397–2406 (2001)

Article  Google Scholar 

Tsumura, N., Haneishi, H., Miyake, Y.: Independent-component analysis of skin color image. J. Opt. Soc. Am. A 16, 2169–2176 (1999)

Article  ADS  Google Scholar 

Nishidate, I., Aizu, Y., Mishina, H.: Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation. J. Biomed. Opt. 9(4), 700–710 (2004)

Article  ADS  Google Scholar 

Wang, L., Jacques, S.L., Zheng, L.Q.: MCML-Monte Carlo modeling of photon transport in multi-layered tissue. Computer. Methods Programs Biomed. 47, 131–146 (1995)

Article  Google Scholar 

Maeda, T., Arakawa, N., Takahashi, M., Aizu, Y.: Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model. Opt. Rev. 17, 223–229 (2010)

Article  Google Scholar 

Aizu, Y., Maeda, T., Kuwahara, T., Hirao, T.: Spectral reflectance fitting based on Monte Carlo simulation using a multi-layered skin tissue model. SPIE Diffuse Optical Imaging III Proc. SPIE, 80880P (2011)

Das, K., Yuasa, T., Nishidate, I., Funamizu, H., Aizu, Y.: Simulated reflectance spectra and point spread functions in database constructed by moderate grouping of nine layers in skin model. Opt. Rev. 27(2), 233–245 (2020)

Article  Google Scholar 

Das, K., Yuasa, T., Maeda, T., Nishidate, I., Funamizu, H., Aizu, Y.: Simple detection of absorption change in skin tissue using simulated spectral reflectance database. Measurement 182, 109684 (2021)

Article  Google Scholar 

Okada, E., Firbank, M., Schweiger, M., Arridge, S.R., Cope, M., Delpy, D.T.: Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl. Opt. 36(1), 21–31 (1997)

Article  ADS  Google Scholar 

Fukui, Y., Ajichi, Y., Okada, E.: Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Appl. Opt. 42(16), 2881–2887 (2003)

Article  ADS  Google Scholar 

Leung, T.S., Elwell, C.E., Delpy, D.T.: Estimation of cerebral oxy- and deoxy-haemoglobin concentration changes in a layered adult head model using near-infrared spectroscopy and multivariate statistical analysis. Phys. Med. Biol. 50(24), 5783–5798 (2005)

Article  Google Scholar 

Mansouri, C., L’Huillier, J.P., Kashou, N.H., Humeau, A.: Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Lasers Med. Sci. 25(3), 431–438 (2010)

Article  Google Scholar 

Myllylä, T., Popov, A., Korhonen, V., Bykov, A., Kinnunen, M.: Optical sensing of a pulsating liquid in a brain-mimicking phantom. Conference on Diffuse Optical Imaging IV, 87990X (2013)

Iino, K., Maruo, K., Arimoto, H., Hyodo, K., Nakatani, T., Yamada, Y.: Monte Carlo simulation of near infrared reflectance spectroscopy in the wavelength range from 1000 nm to 1900 nm. Opt. Rev. 10(6), 600–606 (2003)

Article  Google Scholar 

Zakharov, P., Talary, M.S., Caduff, A.: A wearable diffuse reflectance sensor for continuous monitoring of cutaneous blood content. Phys. Med. Biol. 54(17), 5301–5320 (2009)

Article  Google Scholar 

Zamora-Rojas, E., Garrido-Varo, A., Aernouts, B., Pérez-Marín, D., Saeys, W., Yamada, Y., Guerrero-Ginel, J.E.: Understanding near infrared radiation propagation in pig skin reflectance measurements. Innov. Food Sci. Emerg. Technol. 22, 137–146 (2014)

Article  Google Scholar 

Vaudelle, F., L’Huillier, J.P., Askoura, M.L.: Light source distribution and scattering phase function influence light transport in diffuse multi-layered media. Optics Communications 392, 268–281 (2017)

Article  ADS  Google Scholar 

Meglinski, I.V., Matcher, S.D.: Analysis of the spatial distribution of detector sensitivity in a multilayer randomly inhomogeneous medium with strong light scattering and absorption by the Monte Carlo method. Opt. Spectros. 91(4), 654–659 (2001)

Article  ADS  Google Scholar 

Asplund, K.M., Schenkman, K.A., Ciesielski, W.A., Arakaki, L.S.L.: Photon path depth in tissue phantoms: A comparison of visible and Near-Infrared (NIR) wavelengths. Conference on Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue VI, 89450D (2014)

Finlayson, L., Barnard, I.R.M., McMillan, L., Ibbotson, S.H., Brown, C.T.A., Eadie, E., Wood, K.: Depth penetration of light into skin as a function of wavelength from 200 to 1000 nm. Photochem. Photobiol. 98(4), 974–981 (2022)

Article  Google Scholar 

Agache, P., Humbert, P.: Measuring the Skin. Springer (2004)

Baranski, G.V.G., Krishnaswamy, A.: Light & Skin interactions. Morgan Kaufmann (2010)

Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Transactions on Graphics. 25(3), 935–944 (2006)

Article  Google Scholar 

Nishino, K., Subpa-asa, A., Asano, Y., Shimano, M., Sato, I.: Variable ring light imaging: Capturing transient subsurface scattering with an ordinary camera. Proc. ECCV, 598–613 (2018)

Kono, T., Yamada, J.: In Vivo Measuring of optical properties of human skin for 450–800 nm and 950–1600 nm wavelengths. Int. J. Thermophysics. 40(51), 1–14 (2019)

ADS  Google Scholar 

Kikuchi, K., Tominaga, S., Hardeberg, J.Y.: Development of a system to measure the optical properties of facial skin using a 3D camera and projector. J. Imaging Sci. Technol. 65(5), 50403-1–504031-5 (2021)

Article  Google Scholar 

Wilson, B.C., Adam, G.: A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys. 10, 824–830 (1983)

Article  Google Scholar 

Bonner, R.F., Nossal, R., Havlin, S., Weiss, G.H.: Model for photon migration in turbid biological media. J. Opt. Soc. Am. A 4, 423–432 (1987)

Article  ADS  Google Scholar 

Keijzer, M., Jacques, S.L., Prahl, S.A., Welch, A.J.: Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams. Laser Surg. Med. 9, 148–154 (1989)

Article  Google Scholar 

Flock, S.T., Patterson, M.S., Wilson, B.C., Wyman, D.R.: Monte Carlo modeling of light propagation in highly scattering tissue: I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989)

Prahl, S.A., Keijzer, M., Jacques, S.L., Welch, A.J.: A Monte Carlo model of light propagation in tissue. SPIE Inst. Ser. 5, 102–111 (1989)

Google Scholar 

Yaroslavsky, I.V., Tuchin, V.V.: Light transport in multilayered scattering media Monte Carlo modeling. Opt. Spectroscopy. 72, 934–939 (1992)

Google Scholar 

Meglinski, I.V., Matcher, S.J.: Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol. Meas. 23, 741–753 (2002)

Article  Google Scholar 

Comments (0)

No login
gif