Investigation of impairments separability in direct detection optical performance monitoring based on UMAP technique

Dong, Z., Khan, F.N., Sui, Q., Zhong, K., Lu, C., Lau, A.P.T.: Optical performance monitoring: a review of current and future technologies. J. Lightwave Technol. 34(2), 525–543 (2015)

Article  ADS  Google Scholar 

Yang, H., Zhang, J., Zhao, Y., Ji, Y., Wu, J., Lin, Y., Han, J., Lee, Y.: Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect. Opt. Express 23(10), 13384–13398 (2015)

Article  ADS  Google Scholar 

Kulandaivel, S., Jeyachitra, R.K.: Combined image Hough transform based simultaneous multi-parameter optical performance monitoring for intelligent optical networks. Optic Fiber Techol (2023). https://doi.org/10.1016/j.yofte.2023.103357

Article  Google Scholar 

Jeon, H.-B., Kim, S.-M., Moon, H.-J., Kwon, D.-H., Lee, J.-W., Chung, J.-M., Han, S.-K., Chae, C.-B., Alouini, M.-S.: Free-space optical communications for 6G wireless networks: Challenges, opportunities, and prototype validation. IEEE Commun. Mag. 61(4), 116–121 (2023)

Article  Google Scholar 

Rahmani, M., Sabri, G.N., Cherifi, A., Karar, A.S., Mrabet, H.: Massive capacity of novel three-dimensional OCDMA-FSO system for next generation of high-data wireless networks. Trans Emerg Telecommun Technol 35, e4871 (2024)

Article  Google Scholar 

Rahmani, M., Cherifi, A., Karar, A.S., Naima Sabri, G., Bouazza, B.S.: Contribution of new three-dimensional code based on the VWZCC code extension in eliminating multiple access interference in optical CDMA networks. Photonics 9(5), 310 (2022)

Article  Google Scholar 

Saif, W.S., Esmail, M.A., Ragheb, A.M., Alshawi, T.A., Alshebeili, S.A.: Machine learning techniques for optical performance monitoring and modulation format identification: a survey. IEEE Communications Surveys & Tutorials 22(4), 2839–2882 (2020)

Article  Google Scholar 

Shen, Z., Zeng, X., Wang, J., Liu, J., Lu, J., Ma, J., Zhang, Y., Fan, B.: Multi-parameter optical performance monitoring based on single-channel convolutional neural network. Opt. Fiber Technol. 80, 103472 (2023)

Article  Google Scholar 

Hall, M.N., Foerster, K.-T., Schmid, S., Durairajan, R.: A survey of reconfigurable optical networks. Opt. Switch. Netw. 41, 100621 (2021)

Article  Google Scholar 

Yin, G., Cui, S., Ke, C., Liu, D.: Reference optical spectrum based in-band OSNR monitoring method for EDFA amplified multispan optical fiber transmission system with cascaded filtering effect. IEEE Photonics J. 10(3), 1–10 (2018)

Article  Google Scholar 

Huang, Z., Qiu, J., Wang, S., Ji, X., Tian, Y., Kong, D., Yu, M., Wu, J.: Guideline of choosing optical delay time to optimize the performance of an interferometry-based in-band OSNR monitor. Opt. Lett. 41(18), 4178–4181 (2016)

Article  ADS  Google Scholar 

Lee, J.H., Choi, H.Y., Shin, S.K., Chung, Y.C.: A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks. J. Lightwave Technol. 24(11), 4162–4171 (2006)

Article  ADS  Google Scholar 

Tanimura, T., Hoshida, T., Kato, T., Watanabe, S., Morikawa, H.: Simple learning method to guarantee operational range of optical monitors. J Opt Commun Netw 10(10), D63–D71 (2018)

Article  Google Scholar 

Khan, F.N., Zhong, K., Zhou, X., Al-Arashi, W.H., Yu, C., Lu, C., Lau, A.P.T.: Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Opt. Express 25(15), 17767–17776 (2017)

Article  ADS  Google Scholar 

Hauske, F.N., Kuschnerov, M., Spinnler, B., Lankl, B.: Optical performance monitoring in digital coherent receivers. J. Lightwave Technol. 27(16), 3623–3631 (2009)

Article  ADS  Google Scholar 

Wang, D., Sui, Q., Li, Z.: Toward universal optical performance monitoring for intelligent optical fiber communication networks. IEEE Commun. Mag. 58(9), 54–59 (2020)

Article  Google Scholar 

Shen, T.S.R., Meng, K., Lau, A.P.T., Dong, Z.Y.: Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms. IEEE Photonics Technol. Lett. 22(22), 1665–1667 (2010)

Google Scholar 

Dods S. D, Anderson T.: Optical performance monitoring technique using delay tap asynchronous waveform sampling. Optic Fiber Commun Conference, OThP5 (2006)

Xu, J., Zhao, J., Li, S., Xu, T.: Optical performance monitoring in transparent fiber-optic networks using neural networks and asynchronous amplitude histograms. Opt. Commun. 517, 128305 (2022)

Article  Google Scholar 

Wang, D., Wang, M., Zhang, M., Zhang, Z., Yang, H., Li, J., Li, J., Chen, X.: Cost-effective and data size–adaptive OPM at intermediated node using convolutional neural network-based image processor. Opt. Express 27(7), 9403–9419 (2019)

Article  ADS  Google Scholar 

Saif, W.S., Alshawi, T., Esmail, M.A., Ragheb, A., Alshebeili, S.: Separability of histogram based features for optical performance monitoring: an investigation using t-SNE technique. IEEE Photonics J. 11(3), 1–12 (2019)

Article  Google Scholar 

Saif, W.S., Ragheb, A.M., Alshawi, T.A., Alshebeili, S.A.: Optical performance monitoring in mode division multiplexed optical networks. J. Lightwave Technol. 39(2), 491–504 (2020)

Article  ADS  Google Scholar 

Diaz-Papkovich, A., Anderson-Trocmé, L., Gravel, S.: A review of UMAP in population genetics. J. Hum. Genet. 66(1), 85–91 (2021)

Article  Google Scholar 

van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579 (2008)

Google Scholar 

van der Maaten, L., Postma, E., van den Herik, J.: Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10(66–71), 13 (2009)

Google Scholar 

Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction, vol. 1. Springer, New York (2007)

Book  Google Scholar 

Cai, T.T., Ma, R.: Theoretical foundations of t-sne for visualizing high-dimensional clustered data. J. Mach. Learn. Res. 23(1), 13581–13634 (2022)

MathSciNet  Google Scholar 

Du, Y., Sui, J., Wang, S., Fu, R., Jia, C.: Motor intent recognition of multi-feature fusion EEG signals by UMAP algorithm. Med. Biol. Eng. Comput. 61(10), 2665–2676 (2023)

Article  Google Scholar 

Stolarek, I., Samelak-Czajka, A., Figlerowicz, M., Jackowiak, P.: Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data. Iscience (2022). https://doi.org/10.1016/j.isci.2022.105142

Article  Google Scholar 

Comments (0)

No login
gif