Dong, Z., Khan, F.N., Sui, Q., Zhong, K., Lu, C., Lau, A.P.T.: Optical performance monitoring: a review of current and future technologies. J. Lightwave Technol. 34(2), 525–543 (2015)
Yang, H., Zhang, J., Zhao, Y., Ji, Y., Wu, J., Lin, Y., Han, J., Lee, Y.: Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect. Opt. Express 23(10), 13384–13398 (2015)
Kulandaivel, S., Jeyachitra, R.K.: Combined image Hough transform based simultaneous multi-parameter optical performance monitoring for intelligent optical networks. Optic Fiber Techol (2023). https://doi.org/10.1016/j.yofte.2023.103357
Jeon, H.-B., Kim, S.-M., Moon, H.-J., Kwon, D.-H., Lee, J.-W., Chung, J.-M., Han, S.-K., Chae, C.-B., Alouini, M.-S.: Free-space optical communications for 6G wireless networks: Challenges, opportunities, and prototype validation. IEEE Commun. Mag. 61(4), 116–121 (2023)
Rahmani, M., Sabri, G.N., Cherifi, A., Karar, A.S., Mrabet, H.: Massive capacity of novel three-dimensional OCDMA-FSO system for next generation of high-data wireless networks. Trans Emerg Telecommun Technol 35, e4871 (2024)
Rahmani, M., Cherifi, A., Karar, A.S., Naima Sabri, G., Bouazza, B.S.: Contribution of new three-dimensional code based on the VWZCC code extension in eliminating multiple access interference in optical CDMA networks. Photonics 9(5), 310 (2022)
Saif, W.S., Esmail, M.A., Ragheb, A.M., Alshawi, T.A., Alshebeili, S.A.: Machine learning techniques for optical performance monitoring and modulation format identification: a survey. IEEE Communications Surveys & Tutorials 22(4), 2839–2882 (2020)
Shen, Z., Zeng, X., Wang, J., Liu, J., Lu, J., Ma, J., Zhang, Y., Fan, B.: Multi-parameter optical performance monitoring based on single-channel convolutional neural network. Opt. Fiber Technol. 80, 103472 (2023)
Hall, M.N., Foerster, K.-T., Schmid, S., Durairajan, R.: A survey of reconfigurable optical networks. Opt. Switch. Netw. 41, 100621 (2021)
Yin, G., Cui, S., Ke, C., Liu, D.: Reference optical spectrum based in-band OSNR monitoring method for EDFA amplified multispan optical fiber transmission system with cascaded filtering effect. IEEE Photonics J. 10(3), 1–10 (2018)
Huang, Z., Qiu, J., Wang, S., Ji, X., Tian, Y., Kong, D., Yu, M., Wu, J.: Guideline of choosing optical delay time to optimize the performance of an interferometry-based in-band OSNR monitor. Opt. Lett. 41(18), 4178–4181 (2016)
Lee, J.H., Choi, H.Y., Shin, S.K., Chung, Y.C.: A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks. J. Lightwave Technol. 24(11), 4162–4171 (2006)
Tanimura, T., Hoshida, T., Kato, T., Watanabe, S., Morikawa, H.: Simple learning method to guarantee operational range of optical monitors. J Opt Commun Netw 10(10), D63–D71 (2018)
Khan, F.N., Zhong, K., Zhou, X., Al-Arashi, W.H., Yu, C., Lu, C., Lau, A.P.T.: Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Opt. Express 25(15), 17767–17776 (2017)
Hauske, F.N., Kuschnerov, M., Spinnler, B., Lankl, B.: Optical performance monitoring in digital coherent receivers. J. Lightwave Technol. 27(16), 3623–3631 (2009)
Wang, D., Sui, Q., Li, Z.: Toward universal optical performance monitoring for intelligent optical fiber communication networks. IEEE Commun. Mag. 58(9), 54–59 (2020)
Shen, T.S.R., Meng, K., Lau, A.P.T., Dong, Z.Y.: Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms. IEEE Photonics Technol. Lett. 22(22), 1665–1667 (2010)
Dods S. D, Anderson T.: Optical performance monitoring technique using delay tap asynchronous waveform sampling. Optic Fiber Commun Conference, OThP5 (2006)
Xu, J., Zhao, J., Li, S., Xu, T.: Optical performance monitoring in transparent fiber-optic networks using neural networks and asynchronous amplitude histograms. Opt. Commun. 517, 128305 (2022)
Wang, D., Wang, M., Zhang, M., Zhang, Z., Yang, H., Li, J., Li, J., Chen, X.: Cost-effective and data size–adaptive OPM at intermediated node using convolutional neural network-based image processor. Opt. Express 27(7), 9403–9419 (2019)
Saif, W.S., Alshawi, T., Esmail, M.A., Ragheb, A., Alshebeili, S.: Separability of histogram based features for optical performance monitoring: an investigation using t-SNE technique. IEEE Photonics J. 11(3), 1–12 (2019)
Saif, W.S., Ragheb, A.M., Alshawi, T.A., Alshebeili, S.A.: Optical performance monitoring in mode division multiplexed optical networks. J. Lightwave Technol. 39(2), 491–504 (2020)
Diaz-Papkovich, A., Anderson-Trocmé, L., Gravel, S.: A review of UMAP in population genetics. J. Hum. Genet. 66(1), 85–91 (2021)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579 (2008)
van der Maaten, L., Postma, E., van den Herik, J.: Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10(66–71), 13 (2009)
Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction, vol. 1. Springer, New York (2007)
Cai, T.T., Ma, R.: Theoretical foundations of t-sne for visualizing high-dimensional clustered data. J. Mach. Learn. Res. 23(1), 13581–13634 (2022)
Du, Y., Sui, J., Wang, S., Fu, R., Jia, C.: Motor intent recognition of multi-feature fusion EEG signals by UMAP algorithm. Med. Biol. Eng. Comput. 61(10), 2665–2676 (2023)
Stolarek, I., Samelak-Czajka, A., Figlerowicz, M., Jackowiak, P.: Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data. Iscience (2022). https://doi.org/10.1016/j.isci.2022.105142
Comments (0)