Exploring the active components and potential mechanisms of Alpiniae oxyphyllae Fructus in treating diabetes mellitus with depression by UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking

Ahmed Z, Tokhi A, Arif M, Rehman NU, Sheibani V, Rauf K, Sewell RDE (2023) Fraxetin attenuates disrupted behavioral and central neurochemical activity in a model of chronic unpredictable stress. Front Pharmacol 14:1135497. https://doi.org/10.3389/fphar.2023.1135497

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J (2019) Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 99:101–116. https://doi.org/10.1016/j.neubiorev.2018.12.002

Article  PubMed  Google Scholar 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consortium Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

Article  CAS  PubMed  Google Scholar 

Bartnik MA, Norhammar, Rydén L (2007) Hyperglycaemia and cardiovascular disease. J Intern Med 262(2):145–156. https://doi.org/10.1111/j.1365-2796.2007.01831.x

Article  CAS  PubMed  Google Scholar 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Peng H, Chen C, Wang Y, Sang T, Cai Z, Zhao Q, Chen S, Lin X, Eling T et al (2022a) NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells. Life Sci 311(Pt A):121142. https://doi.org/10.1016/j.lfs.2022.121142

Article  CAS  PubMed  Google Scholar 

Chen S, Tang Y, Gao Y, Nie K, Wang H, Su H, Wang Z, Lu F, Huang W, Dong H (2022b) Antidepressant potential of Quercetin and its glycoside derivatives: a comprehensive review and update. Front Pharmacol 13:865376. https://doi.org/10.3389/fphar.2022.865376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YM, Fan H, Huang J, Shi TS, Li WY, Wang CN, Jiang B, Liu JF (2022c) Hippocampal F3/Contactin plays a role in chronic stress-induced depressive-like effects and the antidepressant actions of vortioxetine in mice. Biochem Pharmacol 202:115097. https://doi.org/10.1016/j.bcp.2022.115097

Article  CAS  PubMed  Google Scholar 

Chiu CJ, Du YF (2019) Longitudinal investigation of the reciprocal relationship between depressive symptoms and glycemic control: the moderation effects of sex and perceived support. J Diabetes Investig 10(3):801–808. https://doi.org/10.1111/jdi.12969

Article  PubMed  Google Scholar 

Chow YY, Verdonschot M, McEvoy CT, Peeters G (2022) Associations between depression and cognition, mild cognitive impairment and dementia in persons with diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 185:109227. https://doi.org/10.1016/j.diabres.2022.109227

Article  PubMed  Google Scholar 

Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA (2018) Scutellariae Radix and Coptidis Rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Int J Mol Sci 19(11). https://doi.org/10.3390/ijms19113634

Demir S, Nawroth PP, Herzig S, Ekim B (2021) Üstünel Emerging Targets in Type 2 Diabetes and Diabetic Complications. Adv Sci (Weinh) 8(18):e2100275. https://doi.org/10.1002/advs.202100275

Dhanya R (2022) Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother 146:112560. https://doi.org/10.1016/j.biopha.2021.112560

Article  CAS  PubMed  Google Scholar 

Di Petrillo A, Orrù G, Fais A, Fantini MC (2022) Quercetin and its derivates as antiviral potentials: a comprehensive review. Phytother Res 36(1):266–278. https://doi.org/10.1002/ptr.7309

Article  CAS  PubMed  Google Scholar 

Dou Z, Liu C, Feng X, Xie Y, Yue H, Dong J, Zhao Z, Chen G, Yang J (2022) Camel whey protein (CWP) ameliorates liver injury in type 2 diabetes mellitus rats and insulin resistance (IR) in HepG2 cells via activation of the PI3K/Akt signaling pathway. Food Funct 13(1):255–269. https://doi.org/10.1039/d1fo01174j

Article  CAS  PubMed  Google Scholar 

Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(Web Server issue):W32–38. https://doi.org/10.1093/nar/gku293

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez JS, Peyrot M, McCarl LA, Collins EM, Serpa L, Mimiaga MJ, Safren SA (2008) Depression and diabetes treatment nonadherence: a meta-analysis. Diabetes Care 31(12):2398–2403. https://doi.org/10.2337/dc08-1341

Article  PubMed  PubMed Central  Google Scholar 

Hou F, Yu Z, Cheng Y, Liu Y, Liang S, Zhang F (2022) Deciphering the pharmacological mechanisms of Scutellaria baicalensis Georgi on oral leukoplakia by combining network pharmacology, molecular docking and experimental evaluations. Phytomedicine 103:154195. https://doi.org/10.1016/j.phymed.2022.154195

Article  CAS  PubMed  Google Scholar 

Huang JXCY, Bao, Li J (2019) Research progress of PI3K/Akt pathway in diabetic cardiomyopathy. Chin Pharmacol Bull 35(9):1202–1205. https://doi.org/10.3969/j.issn.1001-1978.2019.09.005

Article  Google Scholar 

Huang J, Chen B, Wang H, Hu S, Yu X, Reilly J, He Z, You Y, Shu X (2022) Dihydromyricetin attenuates depressive-like behaviors in mice by inhibiting the AGE-RAGE signaling pathway. Cells 11(23). https://doi.org/10.3390/cells11233730

Humo M, Ayazgök B, Becker LJ, Waltisperger E, Rantamäki T, Yalcin I (2020) Ketamine induces rapid and sustained antidepressant-like effects in chronic pain induced depression: role of MAPK signaling pathway. Prog Neuropsychopharmacol Biol Psychiatry 100:109898. https://doi.org/10.1016/j.pnpbp.2020.109898

Article  CAS  PubMed  Google Scholar 

International Diabetes Federation (2021) IDF Diabetes Atlas, 10th edn. Brussels, Belgium https://www.diabetesatlas.org

Ishola IO, Akinleye MO, Oduola MD, Adeyemi OO (2016) Roles of monoaminergic, antioxidant defense and neuroendocrine systems in antidepressant-like effect of Cnestis ferruginea Vahl ex DC (Connaraceae) in rats. Biomed Pharmacother 83:340–348. https://doi.org/10.1016/j.biopha.2016.06.054

Article  PubMed  Google Scholar 

Kang JZ, Wang, Oteiza PI (2020) (-)-Epicatechin mitigates high fat diet-induced neuroinflammation and altered behavior in mice. Food Funct 11(6):5065–5076. https://doi.org/10.1039/d0fo00486c

Article  CAS  PubMed  Google Scholar 

Khaledi M, Haghighatdoost F, Feizi A, Aminorroaya A (2019) The prevalence of comorbid depression in patients with type 2 diabetes: an updated systematic review and meta-analysis on huge number of observational studies. Acta Diabetol 56(6):631–650. https://doi.org/10.1007/s00592-019-01295-9

Article  PubMed  Google Scholar 

Lai MC, Liu WY, Liou SS, Liu IM (2020) A Bibenzyl Component Moscatilin mitigates glycation-mediated damages in an SH-SY5Y Cell Model of neurodegenerative diseases through AMPK activation and RAGE/NF-κB. Pathw Suppression Mol 25(19). https://doi.org/10.3390/molecules25194574

Lee SHSY, Park, Choi CS (2022) Insulin resistance: from mechanisms to therapeutic strategies. Diabetes Metab J 46(1):15–37. https://doi.org/10.4093/dmj.2021.0280

Article  PubMed  Google Scholar 

Leyva-Soto, A., R. Alejandra Chavez-Santoscoy, O. Porras, M. Hidalgo-Ledesma, A. Serrano-Medina, A. Alejandra Ramírez-Rodríguez and N. Alejandra Castillo-Martinez (2021) Epicatechin and quercetin exhibit in vitro antioxidant effect, improve biochemical parameters related to metabolic syndrome, and decrease cellular genotoxicity in humans. Food Res Int 142:110101. https://doi.org/10.1016/j.foodres.2020.110101

Article  CAS  PubMed  Google Scholar 

Li Q, Qu FL, Gao Y, Jiang YP, Rahman K, Lee KH, Han T, Qin LP (2017) Piper Sarmentosum Roxb. Produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity. J Ethnopharmacol 199:9–19. https://doi.org/10.1016/j.jep.2017.01.037

Article  CAS  PubMed  Google Scholar 

Li Y, Chen Q, Ran D, Wang H, Du W, Luo Y, Jiang W, Yang Y, Yang J (2019) Changes in the levels of 12/15-lipoxygenase, apoptosis-related proteins and inflammatory factors in the cortex of diabetic rats and the neuroprotection of baicalein. Free Radic Biol Med 134:239–247. https://doi.org/10.1016/j.freeradbiomed.2019.01.019

Article  CAS  PubMed  Google Scholar 

Li X, Liu Z, Liao J, Chen Q, Lu X, Fan X (2023) Network pharmacology approaches for research of traditional Chinese medicines. Chin J Nat Med 21(5):323–332. https://doi.org/10.1016/s1875-5364(23)60429-7

Article 

Comments (0)

No login
gif
Back To Top