Motion robust coronary MR angiography using zigzag centric ky–kz trajectory and high-resolution deep learning reconstruction

Roth GA, Abate D, Abate KH et al (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1736–1788. https://doi.org/10.1016/S0140-6736(18)32203-7

Article  Google Scholar 

Dewey M (2011) Coronary CT versus MR angiography: pro CT—the role of CT angiography. Radiology 258(2):329–339. https://doi.org/10.1148/radiol.10100161

Article  PubMed  Google Scholar 

Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336. https://doi.org/10.1056/NEJMoa0806576

Article  CAS  PubMed  Google Scholar 

Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K (2006) Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 48(10):1946–1950. https://doi.org/10.1016/j.jacc.2006.07.055

Article  PubMed  Google Scholar 

Di Leo G, Fisci E, Secchi F et al (2016) Diagnostic accuracy of magnetic resonance angiography for detection of coronary artery disease: a systematic review and meta-analysis. Eur Radiol 26(10):3706–3718. https://doi.org/10.1007/s00330-015-4134-0

Article  PubMed  Google Scholar 

Kato S, Kitagawa K, Ishida N et al (2010) Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol 56(12):983–991. https://doi.org/10.1016/j.jacc.2010.01.071

Article  PubMed  Google Scholar 

Langer C, Peterschröder A, Franzke K et al (2009) Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic resonance imaging. J Comput Assist Tomogr 33(2):179–185. https://doi.org/10.1097/RCT.0b013e3181839624

Article  PubMed  Google Scholar 

Nagata M, Kato S, Kitagawa K et al (2011) Diagnostic accuracy of 1.5-T unenhanced whole-heart coronary MR angiography performed with 32-channel cardiac coils: initial single-center experience. Radiology 259(2):384–392. https://doi.org/10.1148/radiol.11101323

Article  PubMed  Google Scholar 

Kunimasa T, Sato Y, Matsumoto N et al (2009) Detection of coronary artery disease by free-breathing, whole heart coronary magnetic resonance angiography: our initial experience. Heart Vessels 24(6):429–433. https://doi.org/10.1007/s00380-008-1143-9

Article  PubMed  Google Scholar 

Pouleur AC, le Polain de Waroux JB, Kefer J, Pasquet A, Vanoverschelde JL, Gerber BL (2008) Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography. Circ Cardiovasc Imaging 1(2):114–121. https://doi.org/10.1161/CIRCIMAGING.107.756304

Article  PubMed  Google Scholar 

Yang PC, Nguyen P, Shimakawa A et al (2004) Spiral magnetic resonance coronary angiography–direct comparison of 1.5 Tesla vs. 3 Tesla. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 6(4):877–884. https://doi.org/10.1081/jcmr-200036180

Article  Google Scholar 

Chen Z, Duan Q, Xue X et al (2010) Noninvasive detection of coronary artery stenoses with contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T. Cardiology 117(4):284–290. https://doi.org/10.1159/000323829

Article  PubMed  Google Scholar 

Yang Q, Li K, Liu X et al (2009) Contrast-enhanced whole-heart coronary MRA at 3.0 T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 54(1):69–76. https://doi.org/10.1016/j.jacc.2009.03.016

Article  PubMed  PubMed Central  Google Scholar 

Hamdan A, Asbach P, Wellnhofer E et al (2011) A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging 4(1):50–61. https://doi.org/10.1016/j.jcmg.2010.10.007

Article  PubMed  Google Scholar 

Chang S, Cham MD, Hu S, Wang Y (2008) 3-T navigator parallel-imaging coronary MR angiography: targeted-volume versus whole-heart acquisition. AJR Am J Roentgenol 191(1):38–42. https://doi.org/10.2214/AJR.07.2503

Article  PubMed  PubMed Central  Google Scholar 

Gharib AM, Ho VB, Rosing DR et al (2008) Coronary artery anomalies and variants: technical feasibility of assessment with coronary MR angiography at 3 T. Radiology 247(1):220–227. https://doi.org/10.1148/radiol.2471070274

Article  PubMed  Google Scholar 

Nakamura S, Ishida M, Nakata K et al (2021) Long-term prognostic value of whole-heart coronary magnetic resonance angiography. J Cardiovasc Magn Reson 23(1):56. https://doi.org/10.1186/s12968-021-00749-w

Article  PubMed  PubMed Central  Google Scholar 

Gerscovich EO, Cronan M, McGahan JP, Jain K, Jones CD, McDonald C (2001) Ultrasonographic evaluation of diaphragmatic motion. J Ultrasound Med Off J Am Inst Ultrasound Med 20(6):597–604. https://doi.org/10.7863/jum.2001.20.6.597

Article  CAS  Google Scholar 

Prieto C, Doneva M, Usman M, Henningsson M, Greil G, Schaeffter T, Botnar RM (2015) Highly efficient respiratory motion compensated free-breathing coronary MRA using golden-step Cartesian acquisition. J Magn Reson Imaging 41:738–746

Article  PubMed  Google Scholar 

Kutsuna H, Uematsu S, Shinoda K (2023) High resolution MR reconstruction with functionally separate neural networks. ISMRM Proc 2023:2922

Google Scholar 

Hokamura M, Uetani H, Nakaura T et al (2024) Exploring the impact of super-resolution deep learning on MR angiography image quality. Neuroradiology 66:217–226. https://doi.org/10.1007/s00234-023-03271-1

Article  PubMed  Google Scholar 

Isogawa K, Ida T, Shiodera T, Takeguchi T (2018) Deep shrinkage convolutional neural network for adaptive noise reduction. IEEE Signal Process Lett 25(2):224–228. https://doi.org/10.1109/LSP.2017.2782270

Article  Google Scholar 

Kidoh M, Shinoda K, Kitajima M et al (2020) Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. Magn Reson Med Sci 19(3):195–206. https://doi.org/10.2463/mrms.mp.2019-0018

Article  PubMed  Google Scholar 

Mori R, Kassai Y, Masuda A et al (2021) Ultrashort echo time time-spatial labeling inversion pulse magnetic resonance angiography with denoising deep learning reconstruction for the assessment of abdominal visceral arteries. J Magn Reson Imaging 53(6):1926–1937. https://doi.org/10.1002/jmri.27481

Article  PubMed  Google Scholar 

Miyazaki M, Umeda M, Kassai Y et al (2019) Fresh blood imaging (FBI) with centric ky–kz trajectory and exponential refocusing flop angle: Comparison with standard FBI. In: 31th Soc Magn Reson Angiogr Annu Meet Nantes Fr Aug 30 2019

Bae WC, Malis V, Vucevic D, Yamamoto A, Nakamura K, Lane J, Miyazaki M (2024) Non-contrast MRI of micro-vascularity of the feet and toes. Jpn J Radiol. https://doi.org/10.1007/s11604-024-01553-z

Article  PubMed  Google Scholar 

Malis V, Bae WC, Yamamoto A, McEvoy LK, McDonald MA, Miyazaki M (2024) Age-related decline of intrinsic cerebrospinal fluid outflow in healthy humans detected with non-contrast spin-labeling MR Imaging. Magn Reson Med Sci 23:66–79. https://doi.org/10.2463/mrms.mp.2022-0117

Article  CAS  PubMed  Google Scholar 

Miyazaki M, Malis V, Kungsamutr, Yamamoto A, McDonald MA, McEvoy LK, Bae WC (2023) Physical exercise alters egress pathways for intrinsic CSF outflow: an investigation performed with spin-labeling MR imaging. Epub Magn Reason Med Sci. https://doi.org/10.2463/mrms.mp.2023-000528

Article  Google Scholar 

Malis V, Bae W, Kassai Y, McDonald MA, Miyazaki M (2023) Non-contrast carotid artery imaging using 3D TOF and time-SLIP bSSFP with centric k–k k-space trajectory. Presented at ISMRM, Toronto

Feng L, Coppo S, Piccini D, Yerly J, Lim RP et al (2018) 5D whole-heart sparse MRI. Mag Reson Med 79:826–838

Article  Google Scholar 

Bastiaansen JAM, Piccini D, Sopra LD et al (2020) Natively fat-suppressed 5D whole-heart MRI with a radial free-running fast-interrupted steady-state (FISS) sequence at 1.5 T and 3 T. Magn Reson Med 83:45–55

Article  CAS  PubMed  Google Scholar 

Sakuma H, Ichikawa Y, Suzawa N et al (2005) Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 237(1):316–321. https://doi.org/10.1148/radiol.2371040830

Article  PubMed  Google Scholar 

Jahnke C, Paetsch I, Nehrke K et al (2005) Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur Heart J 26(21):2313–2319. https://doi.org/10.1093/eurheartj/ehi391

Article  PubMed  Google Scholar 

Comments (0)

No login
gif